Consider the second order nonlinear partial differential equation:
$ \partial_t^2 u = F(u, \partial_x u), \quad (t, x) \in \mathbb{C}\times \mathbb{R}. $
Given small analytic data, Yamane was able to obtain the order of the lifespan of the solution with respect to the smallness parameter $ \varepsilon $. On the other hand, Gourdin and Mechab studied the lifespan of the solution given small Gevrey data, but under the assumption that $ F $ is independent of $ u $. In this paper, we considered non-vanishing Gevrey data and used the method of successive approximations to obtain a solution and constructively estimate its lifespan.
Citation: John Paolo O. Soto, Jose Ernie C. Lope, Mark Philip F. Ona. Lifespan of solutions to second order Cauchy problems with small Gevrey data[J]. AIMS Mathematics, 2024, 9(1): 1434-1442. doi: 10.3934/math.2024070
Consider the second order nonlinear partial differential equation:
$ \partial_t^2 u = F(u, \partial_x u), \quad (t, x) \in \mathbb{C}\times \mathbb{R}. $
Given small analytic data, Yamane was able to obtain the order of the lifespan of the solution with respect to the smallness parameter $ \varepsilon $. On the other hand, Gourdin and Mechab studied the lifespan of the solution given small Gevrey data, but under the assumption that $ F $ is independent of $ u $. In this paper, we considered non-vanishing Gevrey data and used the method of successive approximations to obtain a solution and constructively estimate its lifespan.
[1] | P. D'Ancona, S. Spagnolo, On the life span of the analytic solutions to quasilinear weakly hyperbolic equations, Indiana Univ. Math. J., 40 (1991), 71–99. |
[2] | D. Gourdin, M. Mechab, Problème de Cauchy pour des équations de Kirchhoff généralisées, Commun. Partial Differ. Equ., 23 (1998), 761–776. https://doi.org/10.1080/03605309808821364 doi: 10.1080/03605309808821364 |
[3] | D. Gourdin, M. Mechab, Problème de Cauchy non linéaire à données initiales lentement oscillantes, Bull. Sci. Math., 125 (2001), 371–394. https://doi.org/10.1016/S0007-4497(01)01082-X doi: 10.1016/S0007-4497(01)01082-X |
[4] | H. Kubo, M. Ohta, On systems of semilinear wave equations with unequal propagation speeds in three space dimensions, Funkcial. Ekvac., 48 (2005), 65–98. https://doi.org/10.1619/fesi.48.65 doi: 10.1619/fesi.48.65 |
[5] | H. Kubo, M. Ohta, On the global behavior of classical solutions to coupled systems of semilinear wave equations, In: New trends in the theory of hyperbolic equations, Basel: Birkhäuser, 2005,113–211. https://doi.org/10.1007/3-7643-7386-5_2 |
[6] | H. Kubo, M. Ohta, Blowup for systems of semilinear wave equations in two space dimensions, Hokkaido Math. J., 35 (2006), 697–717. https://doi.org/10.14492/hokmj/1285766425 doi: 10.14492/hokmj/1285766425 |
[7] | J. E. C. Lope, M. P. F. Ona, Local solvability of a system of equations related to Ricci-flat Kähler metrics, Funkcial. Ekvac., 59 (2016), 141–155. https://doi.org/10.1619/fesi.59.141 doi: 10.1619/fesi.59.141 |
[8] | J. E. C. Lope, H. Tahara, On the analytic continuation of solutions to nonlinear partial differential equations, J. Math. Pures Appl., 81 (2002), 811–826. https://doi.org/10.1016/S0021-7824(02)01257-6 doi: 10.1016/S0021-7824(02)01257-6 |
[9] | J. P. O. Soto, J. E. C. Lope, M. P. F. Ona, A constructive approach to obtaining the lifespan of solutions to Cauchy problems with small data, Matimyás Mat., 46 (2023), 22–32. |
[10] | M. A. C. Tolentino, D. B. Bacani, H. Tahara, On the lifespan of solutions to nonlinear Cauchy problems with small analytic data, J. Differ. Equ., 260 (2016), 897–922. https://doi.org/10.1016/j.jde.2015.09.013 doi: 10.1016/j.jde.2015.09.013 |
[11] | C. Wagschal, Le problème de Goursat non-linéaire, J. Math. Pures Appl., 58 (1979), 309–337. |
[12] | H. Yamane, Nonlinear Cauchy problems with small analytic data, Proc. Amer. Math. Soc., 134 (2006), 3353–3361. |
[13] | H. Yamane, Local existence for nonlinear Cauchy problems with small analytic data, J. Math. Sci. Univ. Tokyo, 18 (2011), 51–65. |