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Abstract: Consider the second order nonlinear partial differential equation:

∂2
t u = F(u, ∂xu), (t, x) ∈ C × R.

Given small analytic data, Yamane was able to obtain the order of the lifespan of the solution with
respect to the smallness parameter ε. On the other hand, Gourdin and Mechab studied the lifespan
of the solution given small Gevrey data, but under the assumption that F is independent of u. In this
paper, we considered non-vanishing Gevrey data and used the method of successive approximations to
obtain a solution and constructively estimate its lifespan.
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1. Introduction

The lifespan of solutions to Cauchy problems with small data was studied extensively by many
authors. In some works, functional analytic methods were used in estimating the lifespan of solutions
to semilinear wave equations [4–6]. D’Ancona and Spagnolo [1] considered a second-order nonlinear
Cauchy problem with small data together with a hyperbolicity assumption. They proved that as the
data becomes smaller, the lifespan of the solution becomes longer. An explicit bound for the lifespan
was also obtained in the case where the right-hand side is independent of t.

Yamane [12] considered a nonlinear second-order Cauchy problem without the hyperbolicity
assumption. He showed that if the Cauchy data are small in the sense of a Cauchy type inequality, the
order of the lifespan of the solution is one with respect to 1/ε. This result has been improved in [13]
as the right-hand side of the equation in these works also depends on u and ∂tu. As an extension,
Tolentino, Bacani and Tahara [10] considered the general mth-order equation with small analytic data.
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One notable similarity in these works is that all of them used the Banach fixed point theorem in proving
their results. An alternative approach using the method of successive approximations was presented
in [9], which allowed for a constructive approach in obtaining estimates for the lifespan of solutions
studied in [12].

Gourdin and Mechab [2] considered generalized Kirchoff equations in the real-analytic category
and studied the lifespan of the solutions under some smallness conditions. They proved existence and
uniqueness results, which also established estimates for the lifespan of the solution. In another work,
they also dealt with Cauchy problems involving Gevrey data of general order [3]. In particular, they
considered the equation ∂m

t u = F(t,DBu(t, x)),
∂

j
t u(0, x) = φ j(ε · x), j = 0, 1, . . . ,m − 1,

where (t, x) ∈ C×Rn, B ⊆ {( j, α) ∈ N×Nn : j+ |α| ≤ m, α , 0}, DBu = {Dδu}δ∈B and the Cauchy data φ j

are of Gevrey index d, with d = min{(m − j)/|α|, ( j, α) ∈ B}. In their paper, they obtained a solution
that is holomorphic in t and of Gevrey class with respect to x. Moreover, they showed that if the data φ j

vanishes at the origin, the obtained solution will be stable; that is, the sequence (uε) will tend to the
zero function as ε → 0. Lastly, in the case where F is independent of t, they showed that the order of
the lifespan of the solution is of order σ with respect to 1/ε, where σ = inf{|α|/(m − j), ( j, α) ∈ B}.

In this paper, we will be dealing with two second-order equations involving small Gevrey data. The
first equation deals with the second-order version of the one considered by Gourdin-Mechab in [3],
while the other one slightly widens the class of equations being considered by incorporating u on the
right-hand side of the equation. The framework to be used involves the function spaces and estimates
used in [3, 11, 12] together with the method of successive approximations. Through this constructive
approach, we will see the roles that the terms on the right-hand side play in determining the order of
the lifespan of the solution.

2. Statement of the problem and main result

Let (t, x) ∈ C×R and Ω be an open subset of R. We first define the Gevrey function spaces that will
be used in this paper.

Definition 2.1. A C∞ function φ(x) is said to be of Gevrey index two on Ω ⊆ R if there exists a positive
constant C such that for all α ∈ N,

sup
x∈Ω
|∂αxφ(x)| ≤ Cα+1(α!)2.

We denote by G2(Ω) the collection of all Gevrey index two functions on Ω. For the next definition,
we let BT ⊆ C be the open disk of radius T centered at the origin and set OT = BT ×Ω. Let Cω,∞(OT ) be
the collection of functions whose higher order derivatives in x are continuous on OT , and holomorphic
in t for every fixed x ∈ Ω.

Definition 2.2. A function u(t, x) is said to belong to Gω,2(OT ) if u ∈ Cω,∞(OT ) and there exists a
positive constant C, such that for any α ∈ N and t ∈ BT ,

sup
x∈Ω
|∂αx u(t, x)| ≤ Cα+1(α!)2.
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We formally state our main problem. Consider the second-order Cauchy problem∂2
t u = F(∂xu),

u(0, x) = φ(x), ∂tu(0, x) = ψ(x),
(CP)

where the function F(v) and the initial data satisfy the following:

(A1) F(0) = 0
(A2) F(v) is analytic in a neighborhood of v = 0
(A3) the Cauchy data φ(x) and ψ(x) are of Gevrey index two on Ω.

Specifically, suppose that we can write the right-hand side of (CP) as F(v) = λv + f (v), where λ ∈ C
and f consists of the nonlinear terms in the expansion of F and vanishes of second-order at v = 0.
Under these assumptions, we now state our main result.

Theorem 2.1. Supposing that conditions (A1)–(A3) hold, then there exists µ > 0 such that the following
holds for all 0 < ε < 1: If the Cauchy data satisfies

sup
x∈Ω
|∂αxφ(x)| ≤ εα+1(α!)2 and sup

x∈Ω
|∂αxψ(x)| ≤ εα+1(α!)2

for all α ∈ N, then (CP) has a unique solution in Gω,2(OT ), with T = µε−1/2.

We also consider the case when the right-hand side depends on u; that is, we have the equation∂2
t u = G(u, ∂xu),

u(0, x) = φ(x), ∂tu(0, x) = ψ(x),
(CP2)

where the data satisfies assumption (A3) and the function G(u, v) satisfies

(B1) G(0, 0) = 0 and ∂uG(0, 0) = 0, and
(B2) G(u, v) is analytic in a neighborhood around (u, v) = 0.

Assumptions (B1) and (B2) imply that G(u, v) can be written as λv + g(u, v), where g denotes the
collection of nonlinear terms in the expansion of G. Note that g vanishes of second-order at (u, v) = 0.
It is interesting to note that under the same estimates on the data, the order of the lifespan becomes
different in this case, as stated in the following theorem.

Theorem 2.2. Supposing that conditions (B1), (B2) and (A3) hold, then there exists µ > 0 such that
the following holds for all 0 < ε < 1: If the Cauchy data satisfies

sup
x∈Ω
|∂αxφ(x)| ≤ εα+1(α!)2 and sup

x∈Ω
|∂αxψ(x)| ≤ εα+1(α!)2

for all α ∈ N, then (CP2) has a unique solution in Gω,2(OT ), with T = µε−1/3.

As can be seen from both results, the order of the lifespan of the solution depends on the equation
and also on the estimates of the Cauchy data. This was also observed in the analytic case (see
Theorem 1.9 of [13]). For example, consider the problem

∂2
t u = 2(∂2

xu − u∂xu),

u(0, x) =
ε

1 − εx
, ∂tu(0, x) =

ε2

(1 − εx)2 .

AIMS Mathematics Volume 9, Issue 1, 1434–1442.



1437

The solution is given by u(t, x) = ε(1 − εt − εx)−1, whose lifespan can be seen to be Tε = (1 − ε
2 )ε−1.

This is of order one with respect to ε as ε→ 0, which agrees with results given by the authors in [9] in
the analytic case. Other examples may be seen in [3], but also in the analytic case. Work is under way
to obtain an example where the initial data satisfies Gevrey estimates.

3. Preliminaries

We will discuss here some majorant functions and estimates that will be used in our proof.
We denote by N the set of nonnegative integers, by D−1 and D the usual anti-differentiation and
differentiation operators, respectively, and by ∂−1

t the contour integral over the line segment from zero
to t given ∂−1

t u(t, x) =
∫

[0,t]
u(s, x)ds.

We will use the usual definition of a majorant; that is, given two formal power series f (X) =
∑

akXk

and g(X) =
∑

bkXk, where ak ∈ C and bk ≥ 0, we say that f ≪ g if, and only if, |ak| ≤ bk for all k.
We introduce the power series ϕ(X) given by

ϕ(X) = K−1
∑
k∈N

Xk

(k + 1)2 , where K = 4π2/3. (3.1)

This majorant was used in [12] and was based on Lax’s majorant function. This was also the form of
the majorant used in [8] and in [7], except for the constant term. It is easy to show that ϕ converges in
the unit disk, and that ϕ2 ≪ ϕ (see [7]).

To deal with Gevrey functions, we introduce a formal series used in [3]. For T, ζ > 0, we define

Φ := Φω,dT,ζ (t, x) =
∑
k∈N

(ζx)k

k!
(k!)d−1Dkϕ

( t
T

)
.

It can be shown that Φ also satisfies Φ2 ≪ Φ. Since we are dealing functions of Gevrey index two, we
can set d = 2.

Definition 3.1. Let T, ζ > 0. A function u(t, x) is said to belong to the space Gω,2T,ζ (OT ) if u ∈ Cω,∞(OT ),
and there exists a constant C > 0 such that for all α ∈ N and x ∈ Ω,

∂αx u(t, x) ≪ Cζαα!Dαϕ(t/T ).

The above definition can be written in terms of Φ as u(t, x) ≪ CΦ(t, x) for any fixed x ∈ Ω. If
we define the norm of Gω,2T,ζ (OT ) to be the infimum of the Cs that satisfy the majorant relation, then it
becomes a Banach algebra. Furthermore, for all 0 < T ′ < T and ζ > 0, the subset relation Gω,2T,ζ (OT ) ⊂
Gω,2(OT ′) holds (see Proposition 1 of [3]). Lastly, for the space of vectors τ⃗(t, x) = (τ j(t, x))N

j=1 ∈⊕
G
ω,2
T,ζ (OT ), we define the norm as ∥τ⃗∥N := max j=1,2,...,N∥τ j(x)∥, where the norm ∥τ j(x)∥ is the infimum

norm in Gω,2T,ζ (OT ).
To prove our main result, we shall extend some results from [12] and [3] to the Gevrey function

spaces defined above.

Proposition 3.1. (cf. [12]) Let f (X) = f (X1, . . . , XN) =
∑
|α|≥2 aαXα be a convergent power series that

vanishes of second order at X = 0. If τ⃗(t, x), σ⃗(t, x) ∈
⊕
G
ω,2
T,ζ (OT ) have sufficiently small norms, then
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f (τ⃗(t, x)) and f (σ⃗(t, x)) are well-defined as elements of Gω,2T,ζ (OT ). Moreover, there exists a constant
A = A( f ) > 0, depending only on f and independent of τ⃗, σ⃗,T, ζ and Ω, such that

∥F (⃗τ(x))∥ ≤ A∥τ⃗∥2N ,

∥F (⃗τ(x)) − F(σ⃗(x))∥ ≤ A∥τ⃗ − σ⃗∥N(∥τ⃗∥N + ∥σ⃗∥N).

Moreover, we give estimates involving the operator ∂−k
t ∂

α
x acting on elements of Gω,2T,ζ (OT ).

Proposition 3.2. [3, 12] Let k, α ∈ N with −k + 2α ≤ 0. The operator ∂−k
t ∂

α
x is an endomorphism of

the Banach space Gω,2T,ζ (OT ). Moreover, there exists B > 0 such that

∥∂−k
t ∂

α
x u∥ ≤ BT kζα∥u∥.

If φ(x) ∈ G2(Ω), then we can find constants p(φ) and q(φ) such that for all α ∈ N,

sup
x∈Ω
|∂αxφ(x)| ≤ p(φ)q(φ)(α!)2. (3.2)

The following result states that G2(Ω) is closed under differentiation and we can compute for the
constants p(∂ j

xφ) and q(∂ j
xφ).

Proposition 3.3. If φ(x) ∈ G2(Ω) satisfies (3.2) with p(φ) = q(φ) = ε and m is a positive integer, then
for j = 1, 2, . . . ,m,

p(∂ j
xφ) = (2mm!)2ε j+1, q(∂ j

xφ) = 4ε.

Finally, functions in G2(Ω) are also functions in Gω,2T,ζ (OT ) and we can compute for their norms.

Proposition 3.4. [3, 12] If ψ(x) ∈ G2(Ω), then for all T > 0 and ζ ≥ e2q(ψ), we have ψ(x) ∈ Gω,2T,ζ (OT )
and ∥ψ∥ ≤ K p(ψ), where K is the one in (3.1).

4. Proof of Theorem 2.1

We first prove Theorem 2.1. From the assumptions on (CP), we can rewrite the Cauchy problem as∂2
t u = λ∂xu + f (∂xu),

u(0, x) = φ(x), ∂tu(0, x) = ψ(x),
(CP*)

where λ ∈ C and f (v) vanishes of second order at v = 0. Set u∗ = u−φ− tψ and ∂2
t u∗ = w. Thus, (CP*)

is reduced to Lw = w, where

Lw := λ∂x(∂−2
t w + φ + tψ) + f (∂x(∂−2

t w + φ + tψ)).

We use the method of successive approximations to solve this equation. We define the approximate
solutions {wn} as follows: w−1 ≡ 0 and for n ≥ 0, wn = L(wn−1). Furthermore, define the sequence {dn}

by dn = wn −wn−1. By construction, it is enough to prove the convergence of
n∑

i=0
di in Gω,2T,ζ (OT ) to show

that the sequence {wn} converges also in Gω,2T,ζ (OT ).
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Now, let ε ∈ (0, 1), C = max{A, |λ|}, ζ = (2e)2ε and T = µ/εσ, where σ > 0. We will show that
there exists a solution u(t, x) ∈ Gω,2(OT ) and that σ = 1/2.

We start with the case k = 0. By Proposition 3.3, the linear term is estimated by

∥λ∂x(φ + tψ)∥ ≤ C(∥∂xφ∥ + T∥∂xψ∥) ≤ 26CKε2(1 + T ).

Consequently, by Proposition 3.1, ∥ f (∂x(φ+ tψ))∥ ≤ 212CK2ε4(1+T )2. Hence, as T = µ/εσ and µ < 1,
we have

∥d0∥ ≤ 212CK2ε2(1 + T )(1 + ε2(1 + T ))
= 212CK2(ε2 + µε2−σ)(1 + ε2 + µε2−σ)
≤ 212CK2(ε2 + ε4 + 2ε4−σ + ε2−σ + ε4−2σ).

For the right-hand side estimate to be bounded for any ε ∈ (0, 1), we must have σ ≤ 2. Lastly, since
ε4−σ < ε2−σ for ε ∈ (0, 1), we conclude that ∥d0∥ ≤ 6 · 212CK2ε2−σ.

The next proposition provides similar estimates for the case k ≥ 1. It will also be a sufficient
condition to show the existence of a solution in Gω,2(OT ).

Proposition 4.1. If we choose µ < 1 small enough such that

(2e)2BCµ2(1 + (28e)2BCK2µ2 + 28K) ≤
1
2
,

then the following holds for n ≥ 1:

∥dn∥ ≤ 6 · 212CK2ε(n+2)−(2n+1)σ
(1
2

)n
.

Proof. We prove by induction. Note that d1 satisfies the equation d1 = λ∂x(∂−2
t d0) + H1, where

H1 = f (∂x(∂−2
t w0 + φ + tψ)) − f (∂x(φ + tψ)).

Using Proposition 3.2, we can estimate the linear term as follows:

∥λ∂x(∂−2
t d0)∥ ≤BC(T 2ζ)∥d0∥

≤BC(µ2ε−2σ)((2e)2ε)(6 · 212CK2ε2−σ)
=6 · (27e)2BC2K2µ2ε3−3σ.

For the nonlinear term H1, by Proposition 3.1 we have

∥H1∥ ≤ C∥∂x∂
−2
t d0∥

(
∥∂x∂

−2
t w0∥ + 2∥∂x(φ + tψ)∥

)
.

By the previous cases, ∥∂x(φ + tψ)∥ ≤ 27Kε2−σ. Since w0 = d0, we obtain

∥d1∥ ≤ 6 · (27e)2BC2K2µ2ε3−3σ + 62 · (27e)4B2C3K4µ4ε6−6σ + 6 · 28(27e)2BC2K3µ2ε5−4σ.

Thus, for the right-hand side estimate to be bounded for any ε ∈ (0, 1), we must have σ ≤ 1.
Furthermore, since max{ε6−6σ, ε5−4σ} < ε3−3σ, we get

AIMS Mathematics Volume 9, Issue 1, 1434–1442.



1440

∥d1∥ ≤ 6 · (27e)2BC2K2µ2ε3−3σ(1 + 6(27e)2BCK2µ2 + 28K)
= 6 · 212CK2ε3−3σ((2e)2BCµ2(1 + 6(27e)2BCK2µ2 + 28K))

≤ 6 · 212CK2ε3−3σ
(1
2

)
from our choice of µ.

Now, suppose the claim holds for k ≤ n. We will show that the claim holds for k = n + 1. Recall
that dn+1 = λ∂x∂

−2
t dn + Hn+1, where

Hn+1 = f (∂x(∂−2
t wn + φ + tψ)) − f (∂x(∂−2

t wn−1 + φ + tψ)).

By the inductive hypothesis and Proposition 3.2, we have

∥∂x∂
−2
t dn∥ ≤ 6 · (27e)2BCK2µ2ε(n+3)−(2n+3)σ

(1
2

)n
.

For the nonlinear term Hn+1, we first find an estimate for ∂x∂
−2
t w j. Since the sequence

{
n+2
2n+1

}
is

decreasing, the quantity ∥dk∥ will be bounded for every ε ∈ (0, 1) and k ≤ n if σ ≤ n+2
2n+1 . Moreover, this

implies that for any k = 0, . . . , n,

∥dk∥ ≤ 6 · 212CK2ε(n+2)−(2n+1)σ
(1
2

)k
.

Hence, we have the following estimate for 0 ≤ j ≤ n:

∥∂x∂
−2
t w j∥ ≤ BT 2ζ∥d0 + d1 + · · · + d j∥

≤ B(µ2ε−2σ)((2e)2ε) · 6 · 212CK2ε(n+2)−(2n+1)σ
[
1 +

1
2
+ . . . +

(1
2

) j]
≤ 12 · (27e)2BCK2µ2ε(n+3)−(2n+3)σ.

Thus, by Proposition 3.1 we have

∥Hn+1∥ ≤ C∥∂x∂
−2
t dn∥

(
∥∂x∂

−2
t wn∥ + ∥∂x∂

−2
t wn−1∥ + 2∥∂x(φ + tψ)∥

)
≤ 62 · (215e)2B2C3K4µ4ε(n+3)−(2n+3)σ

(1
2

)n
+ 6 · (211e)2BC2K3µ2ε(n+5)−(2n+4)σ

(1
2

)n
.

As in the previous cases, we must have σ ≤ n+3
2n+3 . Since ε(n+5)−(2n+4)σ ≤ ε(n+3)−(2n+3)σ, we finally obtain

∥dn+1∥ ≤ 6 · (27e)2BC2K2µ2ε(n+3)−(2n+3)σ
(1
2

)n
(1 + 6 · (28e)2BCK2µ2 + 28K)

≤ 6 · 212CK2ε(n+3)−(2n+3)σ((2e)2BCµ2(1 + 6 · (28e)2BCK2µ2 + 28K))
(1
2

)n
≤ 6 · 212CK2ε(n+3)−(2n+3)σ

(1
2

)n+1
,

which proves our claim. □

It is good to note that following the proof of Proposition 4.1, the sequence (∥dn∥) will converge if
σ ≤ n+2

2n+1 for all n ≥ 0, which will be satisfied if σ = 1/2. Thus, T = µε−1/2 and as a consequence,
T → ∞ as ε→ 0.
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5. Proof of Theorem 2.2

For convenience of notation, we set D0,1u = (u, ∂xu). We do the same preliminary steps as in the
previous case; that is, by setting v = u − φ − tψ and ∂2

t v = w, (CP2) is reduced to the initial problem
L1w = w, where the operator L1(w) is defined as

L1(w) := λ∂x(∂−2
t w + φ + tψ) + g(D0,1(∂−2

t w + φ + tψ)).

The approximate solutions {wn}, the sequence {dn} and the other parameters ε, C, ζ, T and σ are defined
similarly as in the previous case. Moreover, following the same arguments as before, we can prove the
following estimate:

Proposition 5.1. If we choose µ < 1 small enough such that 4BCµ2(1+ 6 · 26BCK2µ2 +K) ≤ 1/2, then
the following holds for n ≥ 0:

∥dn∥ ≤ 6 · 26CK2ε(2n+1)−(3·2n+1−4)σ
(1
2

)n
. (5.1)

Here, we can see that the sequence {∥dn∥} will converge if σ ≤ 1/3. Hence, we conclude that
T = µε−1/3.

6. Conclusions

In this paper we have studied two second-order nonlinear Cauchy problems with small data. In the
first case where F does not depend on u, we see that the order of the lifespan to the solution to the
Cauchy problem is 1/2 with respect to 1/ε, which agrees to the order Gourdin and Mechab obtained
in [3]. In the case where F depends on u, we also obtained an estimate of the order of the lifespan. In the
second case, the lifespan tends to∞ at a slower rate as ε→ 0. In both cases, the method of successive
approximations was used in constructively obtaining estimates for the lifespan. We conclude that the
order of the lifespan of the solutions to Cauchy problems with small Gevrey data depends on the data
and on the terms on the right-hand side of the equation.
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