This paper investigates the Cauchy problem on the d-dimensional tropical climate model with fractional hyperviscosity. We establish the small data global well-posedness of solutions to this model with supercritical dissipation. Furthermore, we study the asymptotic stability of these global solutions and obtain the optimal decay rates by using energy method and the method of bootstrapping argument.
Citation: Zhaoxia Li, Lihua Deng, Haifeng Shang. Global well-posedness and large time decay for the d-dimensional tropical climate model[J]. AIMS Mathematics, 2021, 6(6): 5581-5595. doi: 10.3934/math.2021330
This paper investigates the Cauchy problem on the d-dimensional tropical climate model with fractional hyperviscosity. We establish the small data global well-posedness of solutions to this model with supercritical dissipation. Furthermore, we study the asymptotic stability of these global solutions and obtain the optimal decay rates by using energy method and the method of bootstrapping argument.
[1] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Heidelberg: Springer, 2011. |
[2] | J. Bergh, J. Löfström, Interpolation Spaces, An Introduction, Berlin-Heidelberg-New York: Springer-Verlag, 1976. |
[3] | B. Dong, J. Wu, Z. Ye, Global regularity for a 2D tropical climate model with fractional dissipation, J. Nonlinear Sci., 29 (2019), 511–550. doi: 10.1007/s00332-018-9495-5 |
[4] | B. Dong, J. Wu, Z. Ye, 2D tropical climate model with fractional dissipation and without thermal diffusion, Commun. Math. Sci., 18 (2020), 259–292. doi: 10.4310/CMS.2020.v18.n1.a11 |
[5] | B. Dong, W. Wang, J. Wu, Z. Ye, H. Zhang, Global regularity for a class of 2D generalized tropical climate models, J. Differ. Equations, 266 (2019), 6346–6382. doi: 10.1016/j.jde.2018.11.007 |
[6] | B. Dong, W. Wang, J. Wu, H. Zhang, Global regularity results for the climate model with fractional dissipation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 211–229. |
[7] | D. Frierson, A. Majda, O. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit, Commun. Math. Sci., 2 (2004), 591–626. doi: 10.4310/CMS.2004.v2.n4.a3 |
[8] | Y. Guo, Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differ. Equations, 37 (2012), 2165–2208. doi: 10.1080/03605302.2012.696296 |
[9] | T. Kato, G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704 |
[10] | C. E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. Math. Soc., 4 (1991), 323–347. doi: 10.1090/S0894-0347-1991-1086966-0 |
[11] | H. Li, Y. Xiao, Decay rate of unique global solution for a class of 2D tropical climate model, Math. Methods Appl. Sci., 42 (2019), 2533–2543. doi: 10.1002/mma.5529 |
[12] | J. Li, E. S. Titi, A tropical atmosphere model with moisture: global well-posedness and relaxation limit, Nonlinearity, 29 (2016), 2674–2714. doi: 10.1088/0951-7715/29/9/2674 |
[13] | J. Li, E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst., 36 (2016), 4495–4516. doi: 10.3934/dcds.2016.36.4495 |
[14] | J. Li, X. Zhai, Z. Yin, On the global well-posedness of the tropical climate model, ZAMM Z. Angew. Math. Mech., 99 (2019), e201700306. doi: 10.1002/zamm.201700306 |
[15] | C. Ma, Z. Jiang, R. Wan, Local well-posedness for the tropical climate model with fractional velocity diffusion, Kinet. Relat. Models, 9 (2016), 551–570. doi: 10.3934/krm.2016006 |
[16] | C. Miao, J. Wu, Z. Zhang, Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics, Beijing: Science Press, 2012 (in Chinese). |
[17] | T. Runst, W. Sickel, Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations, New York: Walter de Gruyter, Berlin, 1996. |
[18] | V. Sohinger, R. M. Strain, The Boltzmann equation, Besov spaces, and optimal time decay rates in $\mathbb R_x^n$, Adv. Math., 261 (2014), 274–332. doi: 10.1016/j.aim.2014.04.012 |
[19] | E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, N. J.: Princeton University Press, 1970. |
[20] | H. Triebel, Theory of Function Spaces II, Basel: Birkhauser Verlag, 1992. |
[21] | Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307–321. doi: 10.1016/j.jmaa.2016.08.053 |
[22] | Z. Ye, Global regularity of 2D tropical climate model with zero thermal diffusion, ZAMM Z. Angew. Math. Mech., 100 (2020), e201900132. |