Research article

Fixed point theorems for $ (\alpha, \psi) $-rational type contractions in Jleli-Samet generalized metric spaces

  • Received: 10 March 2023 Revised: 17 April 2023 Accepted: 24 April 2023 Published: 11 May 2023
  • MSC : 47H09, 47H10, 54H25

  • The aim of this article is to present some results regarding $ (\alpha, \psi) $-rational type contractions in the setting of the generalized metric spaces introduced by Jleli and Samet. By the nature of these types of contractions which use also comparison functions, new fixed point theorems are established. Already known facts appear as consequences of our outcomes. Examples and comments point out the applicability of our approach.

    Citation: Doru Dumitrescu, Ariana Pitea. Fixed point theorems for $ (\alpha, \psi) $-rational type contractions in Jleli-Samet generalized metric spaces[J]. AIMS Mathematics, 2023, 8(7): 16599-16617. doi: 10.3934/math.2023849

    Related Papers:

  • The aim of this article is to present some results regarding $ (\alpha, \psi) $-rational type contractions in the setting of the generalized metric spaces introduced by Jleli and Samet. By the nature of these types of contractions which use also comparison functions, new fixed point theorems are established. Already known facts appear as consequences of our outcomes. Examples and comments point out the applicability of our approach.



    加载中


    [1] V. Berinde, Iterative approximation of fixed point, Berlin: Springer, 2007.
    [2] M. Samreen, T. Kamran, M. Postolache, Extended $b$-metric space, extended $b$-comparison function and nonlinear contractions, U. Politech. Buch. Ser. A, 80 (2018), 21–28
    [3] E. Karapınar, D. O'Regan, A. Roldan, N. Shahzad, Fixed point theorems in new generalized metric spaces, Fixed Point Theory Appl., 18 (2016), 645–671, https://doi.org/10.1007/s11784-016-0301-4 doi: 10.1007/s11784-016-0301-4
    [4] D. Dumitrescu, A. Pitea, Fixed point theorems on almost $(\varphi, \theta)$-contractions in Jleli-Samet generalized metric spaces, Mathematics, 10 (2022). https://doi.org/10.3390/math10224239 doi: 10.3390/math10224239
    [5] H. H. Alsulami, S. Chandok, M. A. Taoudi, I. M. Erhan, Some fixed point theorems for $(\alpha, \psi)$-rational type contractive mappings, Fixed Point Theory Appl., 2015 (2015), 97. https://doi.org/10.1186/s13663-015-0332-3 doi: 10.1186/s13663-015-0332-3
    [6] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37
    [7] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11
    [8] T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017). https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [9] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Engng., 51 (2000), 3–7.
    [10] M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in $b$-metric spaces via new fixed point theorem, Nonlinear Anal. Model. Control, 22 (2017), 389–400. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2
    [11] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinear contractions in $b$-metric spaces, J. Math. Anal., 7 (2016), 1–12
    [12] G. Okeke, D. Francis, M. de la Sen, Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with application, Helyion, 6 (2020), 1–12, https://doi.org/10.1016/j.heliyon.2020.e04785 doi: 10.1016/j.heliyon.2020.e04785
    [13] A. Nowakowski, R. Plebaniak, Fixed point theorems and periodic problems for nonlinear Hill's equation, Nonlinear Differ. Equ. Appl., 30 (2023), 16. https://doi.org/10.1007/s00030-022-00825-9 doi: 10.1007/s00030-022-00825-9
    [14] M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi type fixed point theorems, J. Anal., 29 (2021), 89–103. https://doi.org/10.1007/s41478-020-00248-8 doi: 10.1007/s41478-020-00248-8
    [15] M. Aslantas, H. Sahin, U. Sadullah, Some generalizations for mixed multivalued mappings, Appl. Gen. Topol., 23 (2021), 169–178. https://doi.org/10.4995/agt.2022.15214 doi: 10.4995/agt.2022.15214
    [16] A. V. Arutyunov, A. V. Greshnov, ($q_1, q_2$)-quasimetric spaces. Covering mappings and coincidence points, Izvestiya Math., 82 (2018), 245–272. https://doi.org/10.1070/IM8546 doi: 10.1070/IM8546
    [17] A. V. Greshnov, V. Potapov, About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics, AIMS Math., 8 (2023), 6191–6205. https://doi.org/10.3934/math.2023313 doi: 10.3934/math.2023313
    [18] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7 doi: 10.1186/s13663-015-0312-7
    [19] I. Altun, B. Samet, Pseudo Picard operators on generalized metric spaces, Appl. Anal. Discrete Math., 12 (2018), 389–400. https://doi.org/10.2298/AADM170105008A doi: 10.2298/AADM170105008A
    [20] E. Karapınar, B. Samet, D. Zhang, Meir-Keeler type contractions on JS-metric spaces and related fixed point theorems, Fixed Point Theory Appl., 20 (2018), 60. https://doi.org/10.1007/s11784-018-0544-3 doi: 10.1007/s11784-018-0544-3
    [21] T. Senapati, L. K. Dey, D. Dolićanin Dekić, Extentions of Ćirić and Wardowski type fixed point theorems in D-generalized metric spaces, Fixed Point Theory Appl., 2016 (2016), 33. https://doi.org/10.1186/s13663-016-0522-7 doi: 10.1186/s13663-016-0522-7
    [22] X. Wu, L. Zhao, Fixed point theorems for generalized alpha-psi type contractive mappings in $b$-metric spaces and applications, J. Math. Comput. Sci., 18 (2018), 49–62. https://doi.org/10.22436/jmcs.018.01.06 doi: 10.22436/jmcs.018.01.06
    [23] S. Thounaojam, R. Yumnam, N. Mlaiki, M. Bina, H. Nawab, R. Doaa, On fixed points of rational contractions in generalized parametric metric and fuzzy metric spaces, J. Inequal. Appl., 2021 (2021), 125. https://doi.org/10.1186/s13660-021-02661-4 doi: 10.1186/s13660-021-02661-4
    [24] A. Deshmukh, D. Gopal, Topology of non-triangular metric spaces and related fixed point results, Filomat, 35 (2021), 3557–3570. https://doi.org/10.2298/FIL2111557D doi: 10.2298/FIL2111557D
    [25] S. Panja, K. Roy, M. Paunović, M. Saha, V. Parvaneh, Fixed points of weakly K-nonexpansive mappings and a stability result for fixed point iterative process with an application, J. Inequal. Appl., 2022 (2022), 90. https://doi.org/10.1186/s13660-022-02826-9 doi: 10.1186/s13660-022-02826-9
    [26] G. Mani, G. Janardhanan, O. Ege, A. J. Gnanaprakasam, M. De la Sen, Solving a boundary value problem via fixed-point theorem on ®-metric space, Symmetry, 14 (2022), 2518. https://doi.org/10.3390/sym14122518 doi: 10.3390/sym14122518
    [27] M. Paunović, S. H. Bonab, V. Parvaneh, F. Golkarmanesh, Soft computing: recent advances and applications in engineering and mathematical sciences, Boca Raton: CRC Press, 2023.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1264) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog