Fixed point theory can be generalized to cover multidisciplinary areas such as computer science; it can also be used for image authentication to ensure secure communication and detect any malicious modifications. In this article, we introduce the notion of complex-valued controlled rectangular metric-type spaces, where we prove fixed point theorems for self-mappings in such spaces. Furthermore, we present several examples and give two applications of our main results: solving linear systems of equations and finding a unique solution for an equation of the form $ f(x) = 0 $.
Citation: Fatima M. Azmi, Nabil Mlaiki, Salma Haque, Wasfi Shatanawi. Complex-valued controlled rectangular metric type spaces and application to linear systems[J]. AIMS Mathematics, 2023, 8(7): 16584-16598. doi: 10.3934/math.2023848
Fixed point theory can be generalized to cover multidisciplinary areas such as computer science; it can also be used for image authentication to ensure secure communication and detect any malicious modifications. In this article, we introduce the notion of complex-valued controlled rectangular metric-type spaces, where we prove fixed point theorems for self-mappings in such spaces. Furthermore, we present several examples and give two applications of our main results: solving linear systems of equations and finding a unique solution for an equation of the form $ f(x) = 0 $.
[1] | S. Banach, Sur les operations dans les ensembles et leur application aux equation sitegrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[2] | J. A. Gatica, W. A. Kirk, A fixed point theorem for k-set-contractions defined in a cone, Pac. J. Math., 53 (1974), 131–136. |
[3] | Z. Zhang, K. Wang, On fixed point theorems of mixed monotone operators and applications, Nonlinear Anal. Theor., 70 (2009), 3279–3284. https://doi.org/10.1016/j.na.2008.04.032 doi: 10.1016/j.na.2008.04.032 |
[4] | J. Brzdek, M. Piszczek, Fixed points of some nonlinear operators in spaces of multifunctions and the Ulam stability, J. Fixed Point Theory Appl., 19 (2017), 2441–2448. https://doi.org/10.1007/s11784-017-0441-1 doi: 10.1007/s11784-017-0441-1 |
[5] | S. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. |
[6] | S. Ghaler, 2-metrishche raume und ihre topologische strukture, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109 |
[7] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37. |
[8] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11. |
[9] | M. A. Kutbi, E. Karapınar, J. Ahmad, A. Azam, Some fixed point results for multi-valued mappings in b-metric spaces, J. Inequal. Appl., 2014 (2014), 126. https://doi.org/10.1186/1029-242X-2014-126 doi: 10.1186/1029-242X-2014-126 |
[10] | T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[11] | E. Karapinar, A short survey on the recent fixed point results on b-metric spaces, Constructive Mathematical Analysis, 1 (2018), 15–44. https://doi.org/10.33205/cma.453034 doi: 10.33205/cma.453034 |
[12] | W. Shatanawi, K. Abodayeh, A. Mukheimer, Some fixed point theorems in extended $b$-metric spaces, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 80 (2018), 71–78. |
[13] | R. George, S. Radenovic, P. K. Reshma, S. Shukla, Rectangular $b$-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. https://doi.org/10.22436/JNSA.008.06.11 doi: 10.22436/JNSA.008.06.11 |
[14] | N. Mlaiki, M. Hajji, T. Abdeljawad, A new extension of the rectangular-metric spaces, Adv. Math. Phys., 2020 (2020), 8319584. https://doi.org/10.1155/2020/8319584 doi: 10.1155/2020/8319584 |
[15] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194 |
[16] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320 |
[17] | W. Shatanawi, Common fixed points for mappings under contractive conditions of $(\alpha, \beta, \psi)$-admissibility type, Mathematics, 6 (2018), 261. https://doi.org/10.3390/math6110261 doi: 10.3390/math6110261 |
[18] | N. Y. Özgür, N. Mlaiki, N. Taş, N. Souayah, A new generalization of metric spaces: rectangular M-metric spaces, Math. Sci., 12 (2018), 223–233. https://doi.org/10.1007/s40096-018-0262-4 doi: 10.1007/s40096-018-0262-4 |
[19] | M. Zhou, N. Saleem, X. L. Liu, N. Ozgur, On two new contractions and discontinuity on fixed points, AIMS Mathematics, 7 (2022), 1628–1663. https://doi.org/10.3934/math.2022095 doi: 10.3934/math.2022095 |
[20] | A. Latif, R. F. A. Subaie, M. O. Ansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138. https://doi.org/10.23952/jnva.6.2022.1.07 doi: 10.23952/jnva.6.2022.1.07 |
[21] | E. Karapınar, R. P. Agarwal, S. S. Yesilkaya, C. Wang, Fixed-point results for Meir-Keeler type contractions in partial metric spaces: a survey, Mathematics, 10 (2022), 3109. https://doi.org/10.3390/math10173109 doi: 10.3390/math10173109 |
[22] | F. M. Azmi, New fixed point results in double controlled metric type spaces with applications, AIMS Mathematics, 8 (2023), 1592–1609. https://doi.org/10.3934/math.2023080 doi: 10.3934/math.2023080 |
[23] | F. M. Azmi, New contractive mappings and solutions to boundary-value problems in triple controlled metric type spaces, Symmetry, 14 (2022), 2270. https://doi.org/10.3390/sym14112270 doi: 10.3390/sym14112270 |
[24] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex-valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. |
[25] | K. Rao, P. Swamy, J. Prasad, A common fixed point theorem in complex-valued b-metric spaces, Bulletin of Mathematics and Statistics Research, 1 (2013), 1–8. |
[26] | N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex-valued extended $b$-metric spaces, Journal of Pure and Applied Analysis, 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011 |
[27] | M. Abbas, V. Raji, T. Nazir, S. Radenovi, Common fixed point of mappings satisfying rational inequalities in ordered complex valued generalized metric spaces, Afr. Mat., 26 (2015), 17–30. https://doi.org/10.1007/s13370-013-0185-z doi: 10.1007/s13370-013-0185-z |
[28] | N. Ullah, M. S. Shagari, Fixed point results in complex-valued rectangular extended $b$-metric spaces with applications, Mathematical Analysis and Complex Optimization, 1 (2020), 107–120. https://doi.org/10.29252/maco.1.2.11 doi: 10.29252/maco.1.2.11 |
[29] | N. Mlaiki, T. Abdeljawad, W. Shatanawi, H. Aydi, Y. Gaba, On complex-valued triple controlled metric spaces and applications, J. Funct. Space., 2021 (2021), 5563456. https://doi.org/10.1155/2021/5563456 doi: 10.1155/2021/5563456 |
[30] | M. S. Aslam, M. S. R. Chowdhury, L. Guran, M. A. Alqudah, T. Abdeljawad, Fixed point theory in complex valued controlled metric spaces with an application, AIMS Mathematics, 7 (2022), 11879–11904. https://doi.org/10.3934/math.2022663 doi: 10.3934/math.2022663 |