In this paper, we describe a new generalization of the multivariate Mittag-Leffler (M-L) function in terms of generalized Pochhammer symbol and study its properties. We provide a few differential and fractional integral formulas for the generalized multivariate M-L function. Furthermore, by using the generalized multivariate M-L function in the kernel, we present a new generalization of the fractional integral operator. Finally, we describe some fundamental characteristics of generalized fractional integrals.
Citation: Gauhar Rahman, Muhammad Samraiz, Manar A. Alqudah, Thabet Abdeljawad. Multivariate Mittag-Leffler function and related fractional integral operators[J]. AIMS Mathematics, 2023, 8(6): 13276-13293. doi: 10.3934/math.2023671
In this paper, we describe a new generalization of the multivariate Mittag-Leffler (M-L) function in terms of generalized Pochhammer symbol and study its properties. We provide a few differential and fractional integral formulas for the generalized multivariate M-L function. Furthermore, by using the generalized multivariate M-L function in the kernel, we present a new generalization of the fractional integral operator. Finally, we describe some fundamental characteristics of generalized fractional integrals.
[1] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[3] | I. Podlubny, Fractional differential equations, London: Academic Press, 1999. |
[4] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Switzerland: Gordon and Breach, 1993. |
[5] | I. Ahmad, H. Ahmad, M. Inc, S. W. Yao, B. Almohsen, Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer, Therm. Sci., 24 (2020), 95–105. https://doi.org/10.2298/TSCI20S1095A doi: 10.2298/TSCI20S1095A |
[6] | H. Ahmad, T. A. Khan, P. S. Stanimirović, Y. M. Chu, I. Ahmad, Modified variational iteration algorithm-Ⅱ: convergence and applications to diffusion models, Complexity, 2020 (2020), 8841718. https://doi.org/10.1155/2020/8841718 doi: 10.1155/2020/8841718 |
[7] | H. Ahmad, A. Agkül, T. A. Khan, P. S. Stanimirović, Y. M. Chu, New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations, Complexity, 2020 (2020), 8829017. https://doi.org/10.1155/2020/8829017 doi: 10.1155/2020/8829017 |
[8] | H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirović, Y. M. Chu, A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations, Results Phys., 19 (2020), 103462. https://doi.org/10.1016/j.rinp.2020.103462 doi: 10.1016/j.rinp.2020.103462 |
[9] | W. B. Bo, W. Liu, Y. Y. Wang, Symmetric and antisymmetric solitons in the fractional nonlinear schrödinger equation with saturable nonlinearity and PT-symmetric potential: stability and dynamics, Optik, 255 (2022), 168697. https://doi.org/10.1016/j.ijleo.2022.168697 doi: 10.1016/j.ijleo.2022.168697 |
[10] | J. J. Fang, D. S. Mou, H. C. Zhang, Y. Y. Wang, Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model, Optik, 228 (2021), 166186. https://doi.org/10.1016/j.ijleo.2020.166186 doi: 10.1016/j.ijleo.2020.166186 |
[11] | Da. S Mou, C. Q. Dai, Vector solutions of the coupled discrete conformable fractional nonlinear Schrödinger equations, Optik, 258 (2022), 168859. https://doi.org/10.1016/j.ijleo.2022.168859 doi: 10.1016/j.ijleo.2022.168859 |
[12] | B. H. Wang, Y. Y. Wang, C. Q. Dai, Y. X. Chen, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59 (2020), 4699–4707. https://doi.org/10.1016/j.aej.2020.08.027 doi: 10.1016/j.aej.2020.08.027 |
[13] | J. J. Fang, D. S. Mou, Y. Y. Wang, H. C. Zhang, C. Q. Dai, Y. X. Chen, Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg–Landau equation, Results Phys., 20 (2021), 103710. https://doi.org/10.1016/j.rinp.2020.103710 doi: 10.1016/j.rinp.2020.103710 |
[14] | P. H. Lu, Y. Y. Wang, C. Q. Dai, Abundant fractional soliton solutions of a space-time fractional perturbed Gerdjikov-Ivanov equation by a fractional mapping method, Chinese J. Phys., 74 (2021), 96–105. https://doi.org/10.1016/j.cjph.2021.08.020 doi: 10.1016/j.cjph.2021.08.020 |
[15] | G. M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha}(x)$, C. R. Acad. Sci. Paris, 137 (1903), 554–558. |
[16] | G. M. Mittag-Leffler, Sur la representation analytique d'une branche uniform d'une fonction monogene: sixième note, Acta Math., 29 (1905), 101–181. https://doi.org/10.1007/BF02403200 doi: 10.1007/BF02403200 |
[17] | A. Wiman, Uber den fundamental satz in der teorie der funktionen $ E_{\alpha}(x)$, Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202 |
[18] | A. Wiman, Uber die nullstellen der funktionen $E_{\alpha}(x)$, Acta Math., 29 (1905), 217–234. https://doi.org/10.1007/BF02403204 doi: 10.1007/BF02403204 |
[19] | N. Agarwal, A propos d'une note de H4. pierre humbert, C. R. Acad. Sci. Paris, 236 (1953), 2031–2032. |
[20] | P. Humbert, Quelques resultats relatifs a la fonction de Mittag-Leffler, C. R. Acad. Sci. Paris, 236 (1953), 1467–1468. |
[21] | P. Humbert, R. P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses generalisation, Bull. Sci. Math., 77 (1953), 180–185. |
[22] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15. |
[23] | A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler functions and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018 |
[24] | G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244–4253. https://doi.org/10.22436/jnsa.010.08.19 doi: 10.22436/jnsa.010.08.19 |
[25] | M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, New York: Chapman and Hall, 2001. https://doi.org/10.1201/9781420036046 |
[26] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Heidelberg: Springer Berlin, 2014. https://doi.org/10.1007/978-3-662-43930-2 |
[27] | H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), 298628. https://doi.org/10.1155/2011/298628 doi: 10.1155/2011/298628 |
[28] | J. Choi, R. K. Parmar, P. Chopra, Extended Mittag-Leffler function and associated fractional calculus operators, Georgian Math. J., 27 (2020), 199–209. https://doi.org/10.1515/gmj-2019-2030 doi: 10.1515/gmj-2019-2030 |
[29] | H. M. Srivastava, G. Rahman, K. S. Nisar, Some extension of the Pochhammer symbol and the associated hypergeometric functions, Iran. J. Sci. Technol. A, 43 (2019), 2601–2606. https://doi.org/10.1007/s40995-019-00756-8 doi: 10.1007/s40995-019-00756-8 |
[30] | H. M. Srivastava, A. Cetinkaya, O. I. Kiymaz, A certain generalized pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484–491. https://doi.org/10.1016/j.amc.2013.10.032 doi: 10.1016/j.amc.2013.10.032 |
[31] | K. S. Nisar, G. Rahman, Z. Tomovski, On a certain extension of Riemann-Liouville fractional derivative operator, Commun. Korean Math. Soc., 34 (2019), 507–522. https://doi.org/10.4134/CKMS.c180140 doi: 10.4134/CKMS.c180140 |
[32] | M. Bohner, G. Rahman, S. Mubeen, K. S. Nisar, A further extension of the extended Riemann-Liouville fractional derivative operator, Turk. J. Math., 42 (2018), 2631–2642. https://doi.org/10.3906/mat-1805-139 doi: 10.3906/mat-1805-139 |
[33] | G. Rahman, S. Mubeen, K. S. Nisar, J. Choi, Certain extended special functions and fractional integral and derivative operators via an extended beta functions, Nonlinear Funct. Anal. Appl., 24 (2019), 1–13. |
[34] | R. K. Saxena, S. L. Kalla, R. Saxena, Multivariate analogue of generalized Mittag–Leffler function, Integr. Transf. Spec. F., 22 (2011), 533–548. https://doi.org/10.1080/10652469.2010.533474 doi: 10.1080/10652469.2010.533474 |
[35] | A. A. Kilbas, M. Saigo, R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Spec. F., 15 (2004), 31–49. https://doi.org/10.1080/10652460310001600717 doi: 10.1080/10652460310001600717 |
[36] | M. A. Özarslan, A. Fernandez, On the fractional calculus of multivariate Mittag-Leffler functions, Int. J. Comput. Math., 99 (2022), 247–273. https://doi.org/10.1080/00207160.2021.1906869 doi: 10.1080/00207160.2021.1906869 |
[37] | A. Nazir, G. Rahman, A. Ali, S. Naheed, K. S. Nisar, W. Albalawi, et al., On generalized fractional integral with multivariate Mittag-Leffler function and its applications, Alex. Eng. J., 61 (2022), 9187–9201. https://doi.org/10.1016/j.aej.2022.02.044 doi: 10.1016/j.aej.2022.02.044 |
[38] | M. Samraiz, A. Mehmood, S. Naheed, G. Rahman, A. Kashuri, K. Nonlaopon, On novel fractional operators involving the multivariate Mittag-Leffler function, Mathematics, 10 (2022), 3991. https://doi.org/10.3390/math10213991 doi: 10.3390/math10213991 |
[39] | M. Samraiz, M. Umer, T. Abdeljawad, S. Naheed, G. Rahman. K. Shah, On Riemann-type weighted fractional operators and solutions to Cauchy problems. CMES Comp. Model. Eng., 136 2023,901–919. https://doi.org/10.32604/cmes.2023.024029 doi: 10.32604/cmes.2023.024029 |
[40] | A. M. Mathai, H. J. Haubold, Special functions for applied scientists, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75894-7 |
[41] | H. M. Srivastava, H. L. Manocha, A treatise on generating functions, New York: Halsted Press, 1984. |
[42] | H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 189–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055 |