Research article Special Issues

Design of double acceptance sampling plan for Weibull distribution under indeterminacy

  • Received: 18 December 2022 Revised: 16 March 2023 Accepted: 23 March 2023 Published: 04 April 2023
  • MSC : 62A86

  • This paper addresses neutrosophic statistics that will be used to design a double- acceptance sampling plan. We will design the sampling plans when the lifetime of the product follows the neutrosophic Weibull distribution. The plan parameters of the proposed double sampling plan will be determined using nonlinear optimization at various indeterminacy values and parameters. The productivity of the double sampling plan using neutrosophic statistics over the sampling plan under classical statistics will be given. The presentation of the proposed double sampling plan will be given with the help of industrial data.

    Citation: Ali Hussein AL-Marshadi, Muhammad Aslam, Abdullah Alharbey. Design of double acceptance sampling plan for Weibull distribution under indeterminacy[J]. AIMS Mathematics, 2023, 8(6): 13294-13305. doi: 10.3934/math.2023672

    Related Papers:

  • This paper addresses neutrosophic statistics that will be used to design a double- acceptance sampling plan. We will design the sampling plans when the lifetime of the product follows the neutrosophic Weibull distribution. The plan parameters of the proposed double sampling plan will be determined using nonlinear optimization at various indeterminacy values and parameters. The productivity of the double sampling plan using neutrosophic statistics over the sampling plan under classical statistics will be given. The presentation of the proposed double sampling plan will be given with the help of industrial data.



    加载中


    [1] S. Singh, Y. M. Tripathi, Acceptance sampling plans for inverse Weibull distribution based on truncated life test, Life Cycle Reliab. Safety Eng., 6 (2017), 169–178. https://doi.org/10.1007/s41872-017-0022-8 doi: 10.1007/s41872-017-0022-8
    [2] A. D. Al-Nasser, B. Y. Alhroub, Acceptance sampling plans using hypergeometric theory for finite population under Q-Weibull distribution, Electron. J. Appl. Stat. Anal., 15 (2022), 374–388. https://doi.org/10.3390/axioms11090438 doi: 10.3390/axioms11090438
    [3] A. Algarni, Group acceptance sampling plan based on new compounded three-parameter Weibull model, Axioms, 11 (2022), 438. https://doi.org/10.3390/axioms11090438 doi: 10.3390/axioms11090438
    [4] S. G. Nassr, A. S. Hassan, R. Alsultan, A. R. El-Saeed, Acceptance sampling plans for the three-parameter inverted Topp-Leone model, Math. Biosci. Eng., 19 (2022), 13628–13659. https://doi.org/10.3934/mbe.2022636
    [5] S. Shafiq, F. Jamal, C. Chesneau, M. Aslam, J. T. Mendy, On the odd Perks exponential model: An application to quality control data, Adv. Oper. Res., 2022 (2022). https://doi.org/10.1155/2022/5502216 doi: 10.1155/2022/5502216
    [6] D. C. Montgomery, Introduction to statistical quality control, John Wiley & Sons, 2007.
    [7] M. Mahdy, B. Ahmed, New distributions in designing of double acceptance sampling plan with application, Pak. J. Stat. Oper. Res., 2018,333–346. https://doi.org/10.18187/pjsor.v13i3.2060 doi: 10.18187/pjsor.v13i3.2060
    [8] C. Saranya, R. Vijayaraghavan, K. S. N. Sharma, Design of double sampling inspection plans for life tests under time censoring based on Pareto type IV distribution, Sci. Rep., 12 (2022), 1–11. https://doi.org/10.1038/s41598-022-11834-0 doi: 10.1038/s41598-022-11834-0
    [9] M. Saha, H. Tripathi, S. Dey, Single and double acceptance sampling plans for truncated life tests based on transmuted Rayleigh distribution, J. Indust. Prod. Eng., 38 (2021), 356–368. https://doi.org/10.1080/21681015.2021.1893843 doi: 10.1080/21681015.2021.1893843
    [10] M. S. Babu, G. S. Rao, K. Rosaiah, Double-acceptance sampling plan for exponentiated Frechet distribution with known shape parameters, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/7308454 doi: 10.1155/2021/7308454
    [11] N. Murugeswari, P. Jeyadurga, S. Balamurali, Optimal design of a skip-lot sampling reinspection plan with a double sampling plan as a reference plan, Sequential Anal., 40 (2021), 370–380. https://doi.org/10.1080/07474946.2021.1940499 doi: 10.1080/07474946.2021.1940499
    [12] F. Smarandache, Introduction to neutrosophic statistics, Sitech and Education Publisher, Craiova, 2014,123.
    [13] J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208
    [14] J. Chen, J. Ye, S. Du, R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry, 9 (2017), 123. https://doi.org/10.3390/sym9070123 doi: 10.3390/sym9070123
    [15] W. H. Woodall, A. R. Driscoll, D. C. Montgomery, A review and perspective on neutrosophic statistical process monitoring methods, IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3207188 doi: 10.1109/ACCESS.2022.3207188
    [16] F. Smarandache, Neutrosophic statistics is an extension of interval statistics, while plithogenic statistics is the most general form of statistics, Int. J. Neutrosophic Sci., 2022. https://doi.org/10.5958/2320-3226.2022.00024.8
    [17] I. Gürkan, K. İhsan, Effects of neutrosophic binomial distribution on double acceptance sampling plans, Conf. P. Sci. Technol., 3 (2020), 68–76.
    [18] G. Işik, İ. Kaya, Design of single and double acceptance sampling plans based on neutrosophic sets, J. Intell. Fuzzy Syst., 42 (2022), 3349–3366. https://doi.org/10.3233/JIFS-211232
    [19] B. M. Hsu, M. H. Shu, B. S. Chen, Evaluating lifetime performance for the Pareto model with censored and imprecise information, J. Stat. Comput. Simul., 81 (2011), 1817–1833. https://doi.org/10.1080/00949655.2010.506439 doi: 10.1080/00949655.2010.506439
    [20] A. Paka, M. R. Mahmoudi, Estimation of lifetime distribution parameters with general progressive censoring from imprecise data, J. Data Sci., 13 (2015), 807–817. https://doi.org/10.6339/JDS.201510_13(4).0010 doi: 10.6339/JDS.201510_13(4).0010
    [21] N. B. Khoolenjani, F. Shahsanaie, Estimating the parameter of exponential distribution under type-Ⅱ censoring from fuzzy data, J. Stat. Theory Appl., 15 (2016), 181–195. https://doi.org/10.2991/jsta.2016.15.2.8 doi: 10.2991/jsta.2016.15.2.8
    [22] N. Abbas, S. Ahmad, M. Riaz, Reintegration of auxiliary information based control charts, Comput. Indust. Eng., 171 (2022), 108479. https://doi.org/10.1016/j.cie.2022.108479 doi: 10.1016/j.cie.2022.108479
    [23] M. Aslam, Testing average wind speed using sampling plan for Weibull distribution under indeterminacy, Sci. Rep., 11 (2021), 1–9. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8
    [24] M. Aslam, C. H. Jun, A double acceptance sampling plan for generalized log-logistic distributions with known shape parameters, J. Appl. Stat., 37 (2010), 405–414. https://doi.org/10.1080/02664760802698979 doi: 10.1080/02664760802698979
    [25] M. Aslam, C. Jun, M. Ahmad, A double acceptance sampling plan based on the truncated life tests in the Weibull model, J. Stat. Theory Appl., 8 (2009), 191–206.
    [26] A. Pak, G. A. Parham, M. Saraj, Inference for the Weibull distribution based on fuzzy data, Rev. Colomb. Estadíst., 36 (2013), 337–356.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1582) PDF downloads(81) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog