No. of Iter. | Time | |||
n | Alg. 3.1 | Alg. 4.1 | Alg. 3.1 | Alg. 4.1 |
2 | 120 | 154 | 0.288s | 1.133s |
10 | 156 | 201 | 0.691s | 2.516s |
50 | 157 | 202 | 4.641s | 13.853s |
100 | 157 | 203 | 12.333s | 53.145s |
Probabilistic linguistic terms set (PLTS), a new tool for expressing uncertain decision information, is composed of all possible linguistic terms (LTs) and their related probabilities. It also increases the corresponding probability of LTs in hesitant fuzzy linguistic term set (HFLTS). On the other hand, aggregation operator is an important information fusion tool, the Maclaurin symmetric mean (MSM) operator can provide more flexibility and robustness in information fusion, and make it more suitable for solving MADM problems with independent attributes. This current study adopts the merits of PLTS and MSM operator, and then a novel probabilistic linguistic decision making approach are targeted. Firstly, the operations of two PLTSs are redefined based upon Archimedean t-norm (ATN) and Archimedean t-conorm (ATC); Secondly, the probabilistic linguistic generalized MSM operator (PLGMSM) is proposed based on ATN and ATC, some properties of PLGMSM are investigated, then some special PLGMSM operators have been studied in detail when the parameters take different values and the generator of ATN takes different functions. Thirdly, the weighted probabilistic linguistic generalized MSM operator (WPLGMSM) is studied along with some properties of PLGMSM, some special WPLGMSM operators have been also investigated in detail when the parameters take different values and the generator of ATN takes different functions. Finally, on the basis of our proposed aggregation operators, the aggregated-based decision making approach is designed and an example is supplied to manifest the effectiveness of the proposed approach. Furthermore, some comparison analyses with extant decision approaches are carried out to illustrate the validity and feasibility of the proposed approach.
Citation: Ya Qin, Siti Rahayu Mohd. Hashim, Jumat Sulaiman. Probabilistic linguistic multi-attribute decision making approach based upon novel GMSM operators[J]. AIMS Mathematics, 2023, 8(5): 11727-11751. doi: 10.3934/math.2023594
[1] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[2] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[3] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie n-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[4] | Guangyu An, Xueli Zhang, Jun He, Wenhua Qian . Characterizations of local Lie derivations on von Neumann algebras. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422 |
[5] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
[6] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[7] | Mohd Arif Raza, Huda Eid Almehmadi . Lie (Jordan) σ−centralizer at the zero products on generalized matrix algebra. AIMS Mathematics, 2024, 9(10): 26631-26648. doi: 10.3934/math.20241295 |
[8] | He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie n-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446 |
[9] | Huizhang Yang, Wei Liu, Yunmei Zhao . Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system. AIMS Mathematics, 2021, 6(2): 1087-1100. doi: 10.3934/math.2021065 |
[10] | Senrong Xu, Wei Wang, Jia Zhao . Twisted Rota-Baxter operators on Hom-Lie algebras. AIMS Mathematics, 2024, 9(2): 2619-2640. doi: 10.3934/math.2024129 |
Probabilistic linguistic terms set (PLTS), a new tool for expressing uncertain decision information, is composed of all possible linguistic terms (LTs) and their related probabilities. It also increases the corresponding probability of LTs in hesitant fuzzy linguistic term set (HFLTS). On the other hand, aggregation operator is an important information fusion tool, the Maclaurin symmetric mean (MSM) operator can provide more flexibility and robustness in information fusion, and make it more suitable for solving MADM problems with independent attributes. This current study adopts the merits of PLTS and MSM operator, and then a novel probabilistic linguistic decision making approach are targeted. Firstly, the operations of two PLTSs are redefined based upon Archimedean t-norm (ATN) and Archimedean t-conorm (ATC); Secondly, the probabilistic linguistic generalized MSM operator (PLGMSM) is proposed based on ATN and ATC, some properties of PLGMSM are investigated, then some special PLGMSM operators have been studied in detail when the parameters take different values and the generator of ATN takes different functions. Thirdly, the weighted probabilistic linguistic generalized MSM operator (WPLGMSM) is studied along with some properties of PLGMSM, some special WPLGMSM operators have been also investigated in detail when the parameters take different values and the generator of ATN takes different functions. Finally, on the basis of our proposed aggregation operators, the aggregated-based decision making approach is designed and an example is supplied to manifest the effectiveness of the proposed approach. Furthermore, some comparison analyses with extant decision approaches are carried out to illustrate the validity and feasibility of the proposed approach.
The variational inequality problem (VIP) was introduced by Stampacchia [1] and provided a very useful tool for researching a large variety of interesting problems arising in physics, economics, finance, elasticity, optimization, network analysis, medical images, water resources, and structural analysis, see for example ([2,3,4,5,6,7,8,9,10,11,12,13,14,15]) and references therein.
Let H be a real Hilbert space with inner product ⟨⋅,⋅⟩ and norm ‖⋅‖, respectively. Let C be a nonempty closed convex subset of H. Let B:C⟶H be an operator.
In this article, our study is related to a classical variational inequality problem (VIP) which aims to find an element x†∈C such that
⟨Bx†,x−x†⟩≥0, ∀x∈C. | (1.1) |
It is well known that x♯∈VI(B,C) if and only if x♯=PC(x♯−ζBx♯), where ζ>0, in other words, the VIP is equivalent to the fixed point problem (see [16]). Supposing that B is η-strongly monotone and L-Lipschitz continuous with 0<ζ<2ηL2, the following sequence {xn} of Picard iterates:
xn+1=PC(xn−ζBxn), | (1.2) |
converges strongly to a point x†∈VI(B,C) due to the fact that PC(I−ζB) is a contraction on C. However, in general, the algorithm (1.2) fails when B is monotone and L-Lipschitz continuous (see [17]). In [7], Korpelevich put forward an extragradient method which provided an important idea for solving monotone variational inequality:
yn=PC(xn−λfxn),xn+1=PC(xn−λfyn), | (1.3) |
where f is monotone, L-Lipschitz continuous in the finite dimensional Euclidean space Rn and λ∈(0,1L).
The another motivation of this article is the split common fixed point problem which aims to find a point u∈H1 such that
u∈Fix(T) and Au∈Fix(S). | (1.4) |
The split common fixed point problem can be regarded as a generalization of the split feasibility problem. Recall that the split feasibility problem is to find a point satisfying
u∈C and Au∈Q, | (1.5) |
where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively and A:H1→H2 is a bounded linear operator. Inverse problems in various disciplines can be expressed as the split feasibility problem and the split common fixed point problem. Problem (1.4) was firstly introduced by Censor and Segal [18]. Note that solving (1.4) can be translated to solve the fixed point equation:
u=S(u−τA∗(I−T)Au), τ>0. |
Whereafter, Censor and Segal proposed an algorithm for directed operators. Since then, there has been growing interest in the split common fixed point problem (see [19,20,21,22]).
Censor et al. [23] first proposed split variational inequality problems by combining the variational inequality problem and the split feasibility problem. Very recently, in 2017, Tian and Jiang [24] considered the following split variational inequality problem: finding an element u such that
u∈VI(A,C) and Bu∈Fix(T), | (1.6) |
where T:H2→H2 is nonexpansive, B:H1→H2 is a bounded linear operator with its adjoint B∗, and A:C→H1 is a monotone and L-Lipschitz continuous mapping. Then they presented the following iteration method by combining the extragradient method with CQ algorithm for solving the (1.6):
Algorithm 1.1. Choose an arbitrary initial value x1∈C. Assume xn has been constructed. Compute
yn=PC(xn−τnA∗(I−T)Axn),zn=PC(yn−ςnFyn),xn+1=PC(yn−ςnFzn). | (1.7) |
They proved that the iterative sequence {xn} defined by Eq (1.7) converges weakly to an element z∈Γ, where Γ is the set of solutions of the problem (1.6). However, Algorithm 1.1 fails, in general, to converge strongly in the setting of infinite-dimensional Hilbert spaces. We also notice that Algorithm 1.1 is involved with three metric projections in each iteration, which might seriously affect the efficiency of the method.
Motivated and inspired by the above works, in the present paper, we consider variational inequality problems and split common fixed point problems for finding an element u such that
ˆx∈VI(A,C) and Bˆx∈∞⋂n=1Fix(Tn), | (1.8) |
where {Tn}∞n=1:H2→H2 is an infinite family of nonexpansive mappings, B:H1→H2 is a bounded linear operator with its adjoint B∗, and A:H1→H1 is a monotone and L-Lipschitz continuous mapping. In contrast to Tian and Jiang [24], we consider the common fixed points of an infinite family of nonexpansive mappings instead of only the fixed points of a nonexpansive mapping. The efficiency of the algorithm is also improved by removing the projection operator in the first iteration which might affect the efficiency of the method to a certain extent. Finally, we present a very simple modification to extragradient method, which makes our algorithm have the strong convergence. It is well known that the strong convergence theorem is always more convenient to use.
This paper is organized as follows: In Section 2, we give some definitions and key lemmas which are used in this paper. Section 3 consists of our algorithms and provides the strong convergence theorems. In Section 4, numerical examples are provided for illustration. Finally, this paper is concluded in Section 5.
Let H be a real Hilbert space with inner product ⟨⋅,⋅⟩ and norm ‖⋅‖, respectively. Let C be a nonempty closed convex subset of H. Let T:C⟶C be an operator. We use Fix(T) to denote the set of fixed points of T, that is, Fix(T)={x†|x†=Tx†,x†∈C}. First, we give some definitions and lemmas related to the involved operators.
Definition 2.1. An operator T:C⟶C is said to be nonexpansive if ‖Tu−Tv‖≤‖u−v‖ for all u,v∈C.
Definition 2.2. An operator A:C⟶H is said to be monotone if ⟨Ax−Ay,x−y⟩≥0 for all x,y∈C.
A monotone operator R:H⇉2H is called maximal monotone if the graph of R is a maximal monotone set.
Definition 2.3. An operator T:C⟶H is said to be L-Lipschitzian if there exists L>0 such that ‖Tx−Ty‖≤L‖x−y‖ for all x,y∈C.
Usually, the convergence of fixed point algorithms requires some additional smoothness properties of the mapping T such as demi-closedness.
Definition 2.4. An operator T is said to be demiclosed if, for any sequence {un} which weakly converges to u∗, and if Tun⟶w, then Tu∗=w.
Recall that the (nearest point or metric) projection from H onto C, denoted by PC, assigns to each u∈H, the unique point PCu∈C with the property:
‖u−PCu‖=inf |
The metric projection \mathcal{P}_{\mathcal{C}} of \mathcal{H} onto \mathcal{C} is characterized by
\begin{eqnarray} \begin{split} &\langle u\;-\mathcal{P}_{\mathcal{C}}u,v-\mathcal{P}_{\mathcal{C}}u\rangle\leq0\\ \; \mathrm{or}&\ \|u-v\|^{2}\geq\|u-\mathcal{P}_{\mathcal{C}}u\|^{2}+\|v-\mathcal{P}_{\mathcal{C}}u\|^{2} \end{split} \end{eqnarray} | (2.1) |
for all u\in \mathcal{H}, v\in \mathcal{C} . It is well known that the metric projection \mathcal{P}_{\mathcal{C}}:\mathcal{H}\rightarrow \mathcal{C} is firmly nonexpansive, that is,
\begin{eqnarray} \begin{split} &\langle u\;-v,\mathcal{P}_{\mathcal{C}}u-\mathcal{P}_{\mathcal{C}}v\rangle\geq\|\mathcal{P}_{\mathcal{C}}u-\mathcal{P}_{\mathcal{C}}v\|^{2}\\ \; \mathrm{or}&\ \|\mathcal{P}_{\mathcal{C}}u-\mathcal{P}_{\mathcal{C}}v\|^{2}\leq\|u-v\|^{2}-\|(I-\mathcal{P}_{\mathcal{C}})u-(I-\mathcal{P}_{\mathcal{C}})v\|^{2} \end{split} \end{eqnarray} | (2.2) |
for all u, v\in \mathcal{H} . More information on the metric projection can be found, for example, in Section 3 of the book by Goebel et al. (see [25]).
For all u, v \in H , the following conclusions hold:
\begin{eqnarray} \|tu+(1-t)v\|^{2} = t\|u\|^{2}+(1-t)\|v\|^{2}-t(1-t)\|u-v\|^{2},\ \ t\in[0,1], \end{eqnarray} | (2.3) |
\begin{eqnarray} \|u+v\|^{2} = \|u\|^{2}+2\langle u,v\rangle+\|v\|^{2} \end{eqnarray} | (2.4) |
and
\begin{eqnarray} \|u+v\|^{2}\leq\|u\|^{2}+2\langle v,u+v\rangle. \end{eqnarray} | (2.5) |
Let \{\mathcal{T}_{n}\}^{\infty}_{n = 1}:\mathcal{H}\rightarrow \mathcal{H} be an infinite family of nonexpansive mappings and \lambda_{1}, \lambda_{2}, ... be real numbers such that 0\leq\lambda_{i}\leq1 for each i\in\mathbb{N} . For any n\in\mathbb{N} , define a mapping \mathcal{W}_{n} of \mathcal{C} into \mathcal{H} as follows:
\begin{eqnarray} \begin{split} \;&\mathcal{U}_{n,n+1} = \mathcal{I},\\ \;&\mathcal{U}_{n,n} = \lambda_{n}\mathcal{T}_{n}\mathcal{U}_{n,n+1}+ (1-\lambda_{n})\mathcal{I},\\ \;&\mathcal{U}_{n,n-1} = \lambda_{n-1}\mathcal{T}_{n-1}\mathcal{U}_{n,n}+ (1-\lambda_{n-1})\mathcal{I},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \;&\ldots\\ \;&\mathcal{U}_{n,k} = \lambda_{k}\mathcal{T}_{k}\mathcal{U}_{n,k+1}+ (1-\lambda_{k})\mathcal{I},\\ \;&\mathcal{U}_{n,k-1} = \lambda_{k-1}\mathcal{T}_{k-1}\mathcal{U}_{n,k}+ (1-\lambda_{k-1})\mathcal{I},\\ \;&\ldots\\ \;&\mathcal{U}_{n,2} = \lambda_{2}\mathcal{T}_{2}\mathcal{U}_{n,3}+ (1-\lambda_{2})\mathcal{I},\\ \;&\mathcal{W}_{n} = \mathcal{U}_{n,1} = \lambda_{1}\mathcal{T}_{1}\mathcal{U}_{n,2}+ (1-\lambda_{1})\mathcal{I}.\\ \end{split} \end{eqnarray} | (2.6) |
Such a mapping \mathcal{W}_{n} is called the \mathcal{W} -mapping generated by \mathcal{T}_{1}, \mathcal{T}_{2}, ..., \mathcal{T}_{n} and \lambda_{1}, \lambda_{2}, ..., \lambda_{n} . We have the following crucial Lemma concerning \mathcal{W}_{n} :
Lemma 2.1. [26] Let \mathcal{H} be a real Hilbert space. Let \{\mathcal{T}_{n}\}^{\infty}_{n = 1}:\mathcal{H}\rightarrow \mathcal{H} be an infinite family of nonexpansive mappings such that \bigcap^{\infty}_{n = 1}\mathrm{Fix} (\mathcal{T}_{n})\neq\emptyset . Let \lambda_{1}, \lambda_{2}, ... be real numbers such that 0\leq\lambda_{i}\leq b < 1 for each i\geq1 . Then we have the following:
(1) For any x\in\mathcal{H} and k\geq1 , the limit \lim_{n\rightarrow \infty}\mathcal{U}_{n, k}x exists;
(2) \mathrm{Fix} (\mathcal{W}) = \bigcap^{\infty}_{n = 1}\mathrm{Fix} (\mathcal{T}_{n}) , where \mathcal{W}x = \lim_{n\rightarrow \infty}\mathcal{W}_{n}x = \lim_{n\rightarrow \infty}\mathcal{U}_{n, 1}x, \ \forall x\in\mathcal{C};
(3) For any bounded sequence \{x_{n}\}\subset \mathcal{H} , \lim_{n\rightarrow \infty}\mathcal{W}x_{n} = \lim_{n\rightarrow \infty}\mathcal{W}_{n}x_{n} .
Lemma 2.2. [27] Assume that \{\alpha_{n}\} is a sequence of nonnegative real numbers such that
\alpha_{n+1}\leq(1-\gamma_{n})\alpha_{n} + \delta_{n}, \ \ n\in \mathbb{N}, |
where \{\gamma_{n}\} is a sequence in (0, 1) and \{\delta_{n}\} is a sequence such that
(1) \sum^{\infty}_{n = 1}\gamma_{n} = \infty ;
(2) \limsup_{n\rightarrow \infty}\frac{\delta_{n}}{\gamma_{n}}\leq0 or \sum^{\infty}_{n = 1}|\delta_{n}| < \infty. Then \lim_{n\rightarrow \infty}\alpha_{n} = 0.
Lemma 2.3. [28] Let \{\varpi_{n}\} be a sequence of real numbers. Assume there exists at least a subsequence \{\varpi_{n_{k}}\} of \{\varpi_{n}\} such that \varpi_{n_{k}}\leq\varpi_{n_{k+1}} for all k\geq0 . For every n\geq N_{0} , define an integer sequence \{\tau(n)\} as:
\tau(n) = \max\{i\leq n:\varpi_{n_{i}} < \varpi_{n_{i+1}}\}. |
Then, \tau(n) \rightarrow \infty as n\rightarrow \infty and for all n\geq N_{0} , we have max\{ \varpi_{\tau(n)}, \varpi_{n}\}\leq\varpi_{\tau(n)+1} .
In this section, we introduce our algorithm and prove its strong convergence. Some assumptions on the underlying spaces and involved operators are listed below.
(R_{1}) \mathcal{H}_{1} and \mathcal{H}_{2} are two real Hilbert spaces and \mathcal{C}\subset\mathcal{H}_{1} is a nonempty closed convex subset.
(R_{2}) \mathcal{B}:\mathcal{H}_{1}\rightarrow \mathcal{H}_{2} is a bounded linear operator with its adjoint \mathcal{B}^{\ast} .
(R_{3}) \mathcal{A}:\mathcal{H}_{1}\rightarrow \mathcal{H}_{1} is a monotone and L -Lipschitz continuous mapping.
(R_{4}) \Omega = \{\hat{x}|\hat{x}\in VI(\mathcal{A}, \mathcal{C}) and \mathcal{B}\hat{x}\in \bigcap^{\infty}_{n = 1} \mathrm{Fix}(\mathcal{T}_{n})\} , where \Omega is the set of solutions of the problem (1.8).
Next, we present the following iterative algorithm to find a point \hat{x}\in\Omega .
Algorithm 3.1. Choose an arbitrary initial value x_{1}\in \mathcal{H} . Assume x_{n} has been constructed. Compute
\begin{eqnarray} \begin{split} \;& y_{n} = x_{n}-\tau_{n} \mathcal{B}^\ast(I-\mathcal{W}_{n})\mathcal{B}x_{n},\\ \;& z_{n} = \mathcal{P}_{\mathcal{C}}(y_{n}-\varsigma_{n}\mathcal{A}y_{n}),\\ \;&x_{n+1} = \mathcal{P}_{\mathcal{C}}((1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n})), \\ \end{split} \end{eqnarray} | (3.1) |
where \{\alpha_{n}\} is a sequence in (0, 1) , \varsigma_{n} is a sequence in (0, \frac{1}{L}) , and \tau_{n} is a sequence in (0, \frac{1}{\|\mathcal{B}\|^{ 2}}) .
Theorem 3.1. If \Omega\neq\emptyset and the following conditions are satisfied:
( C_{1} ) \lim_{n\rightarrow \infty}\alpha_{n} = 0\ and\ \sum^{\infty}_{n = 0}\alpha_{n} = \infty ;
( C_{2} ) 0 < \liminf_{n\rightarrow \infty}\varsigma_{n}\leq \limsup_{n\rightarrow \infty}\varsigma_{n} < \frac{1}{L} ;
( C_{3} ) 0 < \liminf_{n\rightarrow \infty}\tau_{n}\leq \limsup_{n\rightarrow \infty}\tau_{n} < \frac{1}{\|\mathcal{B}\|^{ 2}} .
Then, the iterative sequence \{x_{n}\} defined by Eq (3.1) strongly converges to the minimum-norm solution \hat{x}( = \mathcal{P}_{\Omega}\theta) .
Proof. Set z = \mathcal{P}_{\Omega}\theta . We can obtain that
\begin{eqnarray} \begin{split} &\|y_{n}-z\|^{2}\\ = \;&\|x_{n}-z-\tau_{n} \mathcal{B}^\ast(I-\mathcal{W}_{n})\mathcal{B}x_{n}\|^{2}\\ = \;&\|x_{n}-z\|^{2}-2\tau_{n} \langle x_{n}-z,\mathcal{B}^\ast(I-\mathcal{W}_{n})\mathcal{B}x_{n}\rangle+\|\tau_{n}\mathcal{B}^\ast(I-\mathcal{W}_{n})\mathcal{B}x_{n}\|^{2}\\ = \;&\|x_{n}-z\|^{2}-2\tau_{n} \langle \mathcal{B}x_{n}-\mathcal{B}z,(I-\mathcal{W}_{n})\mathcal{B}x_{n}\rangle+\|\tau_{n}\mathcal{B}^\ast(I-\mathcal{W}_{n})\mathcal{B}x_{n}\|^{2}\\ \leq\;&\|x_{n}-z\|^{2}-\tau_{n} \|(I-\mathcal{W}_{n})\mathcal{B}x_{n}\|^{2}+\tau_{n}^{2}\|\mathcal{B}\|^{2}\cdot\|(I-\mathcal{W}_{n})\mathcal{B}x_{n}\|^{2}\\ \leq\;&\|x_{n}-z\|^{2}-\tau_{n}(1-\tau_{n}\|\mathcal{B}\|^{ 2})\|(I-\mathcal{W}_{n})\mathcal{B}x_{n}\|^{2}\\ \leq\;&\|x_{n}-z\|^{2}. \end{split} \end{eqnarray} | (3.2) |
It follows from (2.1) that
\begin{eqnarray} \begin{split} &\|x_{n+1}-z\|^{2}\\ = \;&\|\mathcal{P}_{\mathcal{C}}((1-\alpha_{n}) (y_{n}-\varsigma_{n}\mathcal{A}z_{n}))-z\|^{2}\\ \leq\;&\|(1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n})-z\|^{2}- \|(1-\alpha_{n})(y_{n} -\varsigma_{n}\mathcal{A}z_{n})-x_{n+1}\|^{2}\\ \leq\;&\|(1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n}-z)+\alpha_{n}(-z)\|^{2} \\ \;&-\|(1-\alpha_{n})(y_{n} -\varsigma_{n}\mathcal{A}z_{n}-x_{n+1})+\alpha_{n}(-x_{n+1})\|^{2}\\ \leq\;&(1-\alpha_{n})\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}-z\|^{2}+\alpha_{n}\|-z\|^{2}\\ \;&-(1-\alpha_{n})\alpha_{n}\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}\|^{2}\\ \;&-((1-\alpha_{n})\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}-x_{n+1}\|^{2}+\alpha_{n}\|-x_{n+1}\|^{2}\\ \;&-(1-\alpha_{n})\alpha_{n}\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}\|^{2})\\ = \;&(1-\alpha_{n})(\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}-z\|^{2}-\|y_{n} -\varsigma_{n}\mathcal{A}z_{n}-x_{n+1}\|^{2})\\ \;&+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}). \end{split} \end{eqnarray} | (3.3) |
We also observe that
\begin{eqnarray} \begin{split} &\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}-z\|^{2}-\|y_{n} -\varsigma_{n}\mathcal{A}z_{n}-x_{n+1}\|^{2}\\ = \;& \|y_{n}-z\|^{2}-\|y_{n} -x_{n+1}\|^{2}+2\varsigma_{n}\langle\mathcal{A}z_{n},z-x_{n+1}\rangle\\ = \;&\|y_{n}-z\|^{2}-\|y_{n} -x_{n+1}\|^{2}+2\varsigma_{n}\langle\mathcal{A}z_{n},z-z_{n}\rangle +2\varsigma_{n}\langle\mathcal{A}z_{n},z_{n}-x_{n+1}\rangle\\ = \;&\|y_{n}-z\|^{2}-\|y_{n} -x_{n+1}\|^{2}+2\varsigma_{n}\langle\mathcal{A}z_{n}-\mathcal{A}z,z-z_{n}\rangle\\ \;&+2\varsigma_{n}\langle\mathcal{A}z,z-z_{n}\rangle +2\varsigma_{n}\langle\mathcal{A}z_{n},z_{n}-x_{n+1}\rangle\\ \geq\;&\|y_{n}-z\|^{2}-\|y_{n} -x_{n+1}\|^{2} +2\varsigma_{n}\langle\mathcal{A}z_{n},z_{n}-x_{n+1}\rangle\\ = \;&\|y_{n}-z\|^{2}-\|y_{n} -z_{n}\|^{2}-\|z_{n} -x_{n+1}\|^{2}\\ \;&+2\langle y_{n}-\varsigma_{n} \mathcal{A}z_{n}-z_{n},x_{n+1}-z_{n}\rangle.\\ \end{split} \end{eqnarray} | (3.4) |
On the other hand, we have that
\begin{eqnarray} \begin{split} &\langle y_{n}-\varsigma_{n} \mathcal{A}z_{n}-z_{n},x_{n+1}-z_{n}\rangle\\ = \;& \langle y_{n}-\varsigma_{n} \mathcal{A}y_{n}-z_{n},x_{n+1}-z_{n}\rangle+ \varsigma_{n}\langle \mathcal{A}y_{n}-\mathcal{A}z_{n},x_{n+1}-z_{n}\rangle\\ \leq\;&\varsigma_{n}\langle \mathcal{A}y_{n}-\mathcal{A}z_{n},x_{n+1}-z_{n}\rangle\\ \leq\;&\varsigma_{n}\|\mathcal{A}y_{n}-\mathcal{A}z_{n}\|\times\|x_{n+1}-z_{n}\|\\ \leq\;&\varsigma_{n} L\|y_{n}-z_{n}\|\times\|x_{n+1}-z_{n}\|.\\ \end{split} \end{eqnarray} | (3.5) |
Hence, we can derive that
\begin{eqnarray} \begin{split} \|x_{n+1}-z\|^{2} = \;&(1-\alpha_{n})(\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}-z\|^{2}-\|y_{n} -\varsigma_{n}\mathcal{A}z_{n}-x_{n+1}\|^{2})+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}),\\ (by(3.4))\leq\;&(1-\alpha_{n})(\|y_{n}-z\|^{2}-\|y_{n} -z_{n}\|^{2}-\|z_{n} -x_{n+1}\|^{2}\\ \;&+2\langle y_{n}-\varsigma_{n} \mathcal{A}z_{n}-z_{n},x_{n+1}-z_{n}\rangle)+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}),\\ (by(3.5))\leq\;&(1-\alpha_{n})(\|y_{n}-z\|^{2}-\|y_{n} -z_{n}\|^{2}-\|z_{n} -x_{n+1}\|^{2}\\ \;&+2\varsigma_{n} L\|y_{n}-z_{n}\|\times\|x_{n+1}-z_{n}\|)+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2})\\ \leq\;&(1-\alpha_{n})(\|y_{n}-z\|^{2}-\|y_{n} -z_{n}\|^{2}-\|z_{n} -x_{n+1}\|^{2}\\ \;&+\varsigma_{n}^{2} L^{2}\|y_{n}-z_{n}\|^{2}+\|x_{n+1}-z_{n}\|^{2})+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2})\\ \leq\;&(1-\alpha_{n})(\|y_{n}-z\|^{2}+(\varsigma_{n}^{2} L^{2}-1)\|y_{n}-z_{n}\|^{2})+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}),\\ (by(3.2))\leq\;&(1-\alpha_{n})(\|x_{n}-z\|^{2}+(\varsigma_{n}^{2} L^{2}-1)\|y_{n}-z_{n}\|^{2})+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}).\\ \end{split} \end{eqnarray} | (3.6) |
Owing to the assumption ( C_{2} ), it follows from (3.6) that
\begin{eqnarray} \begin{split} \|x_{n+1}-z\|^{2} \leq\;&(1-\alpha_{n})\|y_{n}-z\|^{2}+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}),\\ (by(3.2))\leq\;&(1-\alpha_{n})\|x_{n}-z\|^{2}+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2})\\ \leq\;&(1-\alpha_{n})\|x_{n}-z\|^{2}+\alpha_{n}\|z\|^{2}\\ \leq\;&\max\{\|x_{n}-z\|^{2},\|z\|^{2}\}\\ \end{split} \end{eqnarray} | (3.7) |
and so
\begin{eqnarray} \begin{split} \|x_{n}-z\|^{2} \leq\max\{\|x_{1}-z\|^{2},\|z\|^{2}\}, \end{split} \end{eqnarray} | (3.8) |
which implies that the sequence \{x_{n}\} is bounded. In view of (3.2) and (3.7), we obtain that
\begin{eqnarray} \begin{split} &\tau_{n}(1-\tau_{n}\|\mathcal{B}\|^{ 2})\|(I-\mathcal{W}_{n})\mathcal{B}x_{n}\|^{2}\\ \leq\;& \|x_{n}-z\|^{2}-\|y_{n}-z\|^{2}\\ \leq\;& \|x_{n}-z\|^{2}-\|x_{n+1}-z\|^{2}+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}-\|y_{n}-z\|^{2}).\\ \end{split} \end{eqnarray} | (3.9) |
CASE \mathbb{I} . Suppose that there exists m > 0 such that the sequence \{\|x_{n}-z\|\} is decreasing when n\geq m . Then, \lim_{n\rightarrow \infty}\|x_{n}-z\| exists. Consequently, according to the assumptions ( C_{1} ) and ( C_{3} ), we deduce that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|(I-\mathcal{W}_{n})\mathcal{B}x_{n}\| = 0. \end{split} \end{eqnarray} | (3.10) |
In virtue of the boundedness of the sequence \{\mathcal{B}x_{n}\} and Lemma 2.1, we get that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|W\mathcal{B}x_{n}- W_{n}\mathcal{B}x_{n}\| = 0. \end{split} \end{eqnarray} | (3.11) |
This together with (3.24) implies that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|(I-\mathcal{W})\mathcal{B}x_{n}\| = 0. \end{split} \end{eqnarray} | (3.12) |
It follows from (3.6) that
\begin{eqnarray} \begin{split} &(1-\alpha_{n})(1-\varsigma_{n}^{2} L^{2})\|y_{n}-z_{n}\|^{2}\\ \leq\;&(1-\alpha_{n})\|x_{n}-z\|^{2}-\|x_{n+1}-z\|^{2}\\ \;&+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2})\\ \leq\;&\|x_{n}-z\|^{2}-\|x_{n+1}-z\|^{2}\\ \;&+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}-\|x_{n}-z\|^{2}).\\ \end{split} \end{eqnarray} | (3.13) |
Thanks to the boundedness of the sequence \{x_{n}\} , we derive that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|y_{n}-z_{n}\| = 0. \end{split} \end{eqnarray} | (3.14) |
In view of (3.30), we can also get that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|y_{n}-x_{n}\| = \lim\limits_{n\rightarrow \infty}\|\tau_{n} \mathcal{B}^\ast(I-\mathcal{W}_{n})\mathcal{B}x_{n}\| = 0(by(3.10)). \end{split} \end{eqnarray} | (3.15) |
Combining (3.14) and (3.15), we obtain that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|z_{n}-x_{n}\| = 0. \end{split} \end{eqnarray} | (3.16) |
On the other hand, we get that
\begin{eqnarray} \begin{split} \|x_{n+1}-z_{n}\| = \;&\|\mathcal{P}_{\mathcal{C}}((1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n}))-\mathcal{P}_{\mathcal{C}}(y_{n}-\varsigma_{n}\mathcal{A}y_{n})\|\\ \leq\;&\|(1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n})-(y_{n}-\varsigma_{n}\mathcal{A}y_{n})\|\\ \leq\;&\|(y_{n}-\varsigma_{n}\mathcal{A}z_{n})-(y_{n}-\varsigma_{n}\mathcal{A}y_{n})\|+\alpha_{n}\|y_{n}-\varsigma_{n}\mathcal{A}z_{n})\|\\ \leq\;&\|\varsigma_{n}\mathcal{A}z_{n}-\varsigma_{n}\mathcal{A}y_{n}\|+\alpha_{n}\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}\|\\ \leq\;&\varsigma_{n}\|\mathcal{A}z_{n}-\mathcal{A}y_{n}\| +\alpha_{n}\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}\|\\ \leq\;&\varsigma_{n}L\|z_{n}-y_{n}\| +\alpha_{n}\|y_{n}-\varsigma_{n}\mathcal{A}z_{n}\|.\\ \end{split} \end{eqnarray} | (3.17) |
Hence, by (3.14), it turns out that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|x_{n+1}-z_{n}\| = 0 \end{split} \end{eqnarray} | (3.18) |
and consequently, according to (3.16), we have that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|x_{n+1}-x_{n}\| = 0. \end{split} \end{eqnarray} | (3.19) |
Next, we can take a subsequence \{n_{i}\} such that
\begin{eqnarray} \begin{split} \limsup\limits_{n\rightarrow \infty}(\|z\|^{2}-\|x_{n+1}\|^{2}) = \;&\lim\limits_{i\rightarrow \infty}(\|z\|^{2}-\|x_{n_{i}+1}\|^{2}).\\ \end{split} \end{eqnarray} | (3.20) |
By the boundedness of the real sequence \{x_{n_{i}+1}\}, we may assume that x_{n_{i}+1}\rightharpoonup x^{\dagger}. Since \mathcal{W} is nonexpansive, we can derive that \mathcal{B}x^{\dagger} = \mathcal{W}\mathcal{B}x^{\dagger} (see Corollary 4.28 in [29]), that is, \mathcal{B}x^{\dagger}\in Fix(\mathcal{W}) = \bigcap^{\infty}_{n = 1}Fix(\mathcal{T}_{n}) .
Now, we show that x^{\dagger}\in VI(\mathcal{A}, \mathcal{C}) . Let
\begin{equation} \mathcal{R}(v) = \left\{ \begin{aligned} &\mathcal{A}v+\mathcal{N}_{\mathcal{C}}(v),\ &v\in \mathcal{C}, \\ &\emptyset\ \ &v\not\in \mathcal{ C}, \end{aligned} \right. \end{equation} | (3.21) |
where \mathcal{N}_{\mathcal{C}}(v) is the normal cone to \mathcal{C} at v . According to Reference [30], we can easily derive that \mathcal{R} is maximal monotone. Let (v, w)\in G(\mathcal{R}) . Since w -Av \in\mathcal{N}_{\mathcal{C}}(v) and x_{n}\in \mathcal{C} , we have that
\langle v-x_{n},w -Av\rangle\geq0. |
Noting that, due to v\in \mathcal{C} , we get
\langle v-x_{n+1},x_{n+1}-(1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n})) \rangle\geq0. |
It follows that
\langle v-x_{n+1},\frac{x_{n+1}-y_{n}}{\varsigma_{n}}+\mathcal{A}z_{n}+ \frac{\alpha_{n}}{\varsigma_{n}}(y_{n}-\varsigma_{n}\mathcal{A}z_{n})\rangle\geq0. |
Thus, we can deduce that
\begin{eqnarray} \begin{split} &\langle v-x_{n_{i}+1},w \rangle\\ \geq\;&\langle v-x_{n_{i}+1},Av\rangle\\ \geq\;&-\langle v-x_{n_{i}+1},\frac{x_{n_{i}+1}-y_{n_{i}}}{\varsigma_{n_{i}}}+\mathcal{A}z_{n_{i}}+ \frac{\alpha_{n_{i}}}{\varsigma_{n_{i}}}(y_{n_{i}}-\varsigma_{n_{i}}\mathcal{A}z_{n_{i}})\rangle\\ \;&+\langle v-x_{n_{i}+1},Av\rangle\\ \geq\;&\langle v-x_{n_{i}+1},\mathcal{A}v-\mathcal{A}z_{n_{i}}\rangle-\langle v-x_{n_{i}+1},\frac{x_{n_{i}+1}-y_{n_{i}}}{\varsigma_{n_{i}}} \rangle\\ \;&-\langle v-x_{n_{i}+1}, \frac{\alpha_{n_{i}}}{\varsigma_{n_{i}}}(y_{n_{i}}-\varsigma_{n_{i}}\mathcal{A}z_{n_{i}})\rangle\\ \geq\;&\langle v-x_{n_{i}+1},\mathcal{A}v-\mathcal{A}x_{n_{i}+1}\rangle+ \langle v-x_{n_{i}+1},\mathcal{A}x_{n_{i}+1}-\mathcal{A}z_{n_{i}}\rangle\\ \;&-\langle v-x_{n_{i}+1},\frac{x_{n_{i}+1}-y_{n_{i}}}{\varsigma_{n_{i}}} \rangle- \langle v-x_{n_{i}+1}, \frac{\alpha_{n_{i}}}{\varsigma_{n_{i}}}(y_{n_{i}}-\varsigma_{n_{i}}\mathcal{A}z_{n_{i}})\rangle\\ \geq \;&-\langle v-x_{n_{i}+1},\frac{x_{n_{i}+1}-y_{n_{i}}}{\varsigma_{n_{i}}} \rangle- \langle v-x_{n_{i}+1}, \frac{\alpha_{n_{i}}}{\varsigma_{n_{i}}}(y_{n_{i}}-\varsigma_{n_{i}}\mathcal{A}z_{n_{i}})\rangle\\ \;&+\langle v-x_{n_{i}+1},\mathcal{A}x_{n_{i}+1}-\mathcal{A}z_{n_{i}}\rangle.\\ \end{split} \end{eqnarray} | (3.22) |
As i\rightarrow \infty , we obtain that
\langle v-x^{\dagger},w \rangle\geq0. |
By the maximal monotonicity of \mathcal{R} , we derive that x^{\dagger}\in\mathcal{R}^{-1}0 . Hence, x^{\dagger}\in VI(\mathcal{A}, \mathcal{C}) . Therefore, x^{\dagger}\in\Omega . Since the norm of the Hilbert space \mathcal{H}_{1} is weakly lower semicontinuous(see Lemma 2.42 in [29]), we have the following inequality:
\|x^{\dagger}\|\leq\liminf\limits_{i\rightarrow \infty}\|x_{n_{i}+1}\| |
and therefore
-\|x^{\dagger}\|\geq\limsup\limits_{i\rightarrow \infty}(-\|x_{n_{i}+1}\|). |
From (3.7), we observe that
\begin{eqnarray} \begin{split} \|x_{n+1}-z\|^{2} \leq\;&(1-\alpha_{n})\|x_{n}-z\|^{2}+\alpha_{n}(\|z\|^{2}-\|x_{n+1}\|^{2}).\\ \end{split} \end{eqnarray} | (3.23) |
Thanks to z = \mathcal{P}_{\Omega}\theta and x^{\dagger}\in\Omega , we can deduce that
\limsup\limits_{n\rightarrow \infty}(\|z\|^{2}-\|x_{n_{i}+1}\|^{2}) = \|z\|^{2}+\limsup\limits_{n\rightarrow \infty}(-\|x_{n_{i}+1}\|^{2})\leq\|z\|^{2}-\|x^{\dagger}\|^{2}\leq0. |
Applying Lemma 2.2 to (3.23), we derive that \lim_{n\rightarrow \infty}\|x_{n}-z\| = 0 , which implies that the sequence \{x_{n}\} converges strongly to z .
CASE \mathbb{II} . For any n_{0} , there exists an integer m\geq n_{0} such that \|x_{m}-z\|\leq\|x_{m+1}-z\| . At this case, we set \varpi_{n} = \|x_{n}-z\| . For n\geq n_{0} , we define a sequence \{\tau_{n}\} by
\tau(n) = \max\{l\in\mathbb{N}|n_{0}\leq l\leq n,\varpi_{l}\leq\varpi_{l+1}\}. |
It is easy to show that \tau(n) is a non-decreasing sequence such that
\lim\limits_{n\rightarrow \infty}\tau(n) = +\infty |
and
\varpi_{\tau(n)}\leq\varpi_{\tau(n)+1}. |
This together with (3.9) implies that
\begin{eqnarray} \begin{split} \lim\limits_{n\rightarrow \infty}\|(I-\mathcal{W}_{\tau(n)})\mathcal{B}x_{\tau(n)}\|^{2} = 0. \end{split} \end{eqnarray} | (3.24) |
Employing techniques similar to CASE \mathbb{I} , we have
\begin{eqnarray} \begin{split} \limsup\limits_{n\rightarrow \infty}(\|z\|^{2}-\|x_{\tau(n)+1}\|^{2})\leq0 \end{split} \end{eqnarray} | (3.25) |
and
\begin{eqnarray} \begin{split} \varpi_{\tau(n)+1}^{2} \leq\;&(1-\alpha_{\tau(n)})\varpi_{\tau(n)}^{2} +\alpha_{\tau(n)}(\|z\|^{2}-\|x_{\tau(n)+1}\|^{2}).\\ \end{split} \end{eqnarray} | (3.26) |
Since \varpi_{\tau(n)}\leq\varpi_{\tau(n)+1}, we have
\begin{eqnarray} \begin{split} \varpi^{2}_{\tau(n)} \leq\|z\|^{2}-\|x_{\tau(n)+1}\|^{2}. \end{split} \end{eqnarray} | (3.27) |
By (3.25), we obtain that
\limsup\limits_{n\rightarrow \infty}\varpi_{\tau(n)}\leq0 |
and so
\begin{eqnarray} \lim\limits_{n\rightarrow \infty}\varpi_{\tau(n)} = 0. \end{eqnarray} | (3.28) |
By Eq (3.26), we also obtain
\limsup\limits_{n\rightarrow \infty}\varpi_{\tau(n)+1}\leq \limsup\limits_{n\rightarrow \infty}\varpi_{\tau(n)}. |
In the light of the last inequality and Eq (3.28), we derive that
\lim\limits_{n\rightarrow \infty}\varpi_{\tau(n)+1} = 0. |
Applying Lemma 2.3, we obtain
\varpi_{n}\leq\varpi_{\tau(n)+1}. |
Therefore, we get that \varpi_{n}\rightarrow0 , that is, x_{n}\rightarrow z . This completes the proof.
Algorithm 3.2. Choose an arbitrary initial value x_{1}\in \mathcal{C} . Assume x_{n} has been constructed. Compute
\begin{eqnarray} \begin{split} \;& y_{n} = x_{n}-\tau_{n} \mathcal{B}^\ast(I-\mathcal{T})\mathcal{B}x_{n},\\ \;& z_{n} = \mathcal{P}_{\mathcal{C}}(y_{n}-\varsigma_{n}\mathcal{A}y_{n}),\\ \;&x_{n+1} = \mathcal{P}_{\mathcal{C}}((1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n})), \\ \end{split} \end{eqnarray} | (3.29) |
where \{\alpha_{n}\} is a sequence in (0, 1) , \varsigma_{n} is a sequence in (0, \frac{1}{L}) , and \tau_{n} is a sequence in (0, \frac{1}{\|\mathcal{B}\|^{ 2}}) .
Theorem 3.2. If \hat{\Omega}\neq\emptyset and the following conditions are satisfied:
( C_{1} ) lim_{n\rightarrow \infty}\alpha_{n} = 0\ and\ \sum^{\infty}_{n = 0}\alpha_{n} = \infty ;
( C_{2} ) 0 < \liminf_{n\rightarrow \infty}\varsigma_{n}\leq \limsup_{n\rightarrow \infty}\varsigma_{n} < \frac{1}{L} ;
( C_{3} ) 0 < \liminf_{n\rightarrow \infty}\tau_{n}\leq \limsup_{n\rightarrow \infty}\tau_{n} < \frac{1}{\|\mathcal{B}\|^{ 2}} .
Then, the iterative sequence \{x_{n}\} defined by Eq (3.29) strongly converges to the minimum-norm solution \hat{x}( = \mathcal{P}_{\hat{\Omega}}\theta) , where
\hat{\Omega} = \{\hat{x}|\hat{x}\in VI(\mathcal{A},\mathcal{C})\ and \ \mathcal{B}\hat{x}\in Fix(\mathcal{T})\}\neq\emptyset. |
Algorithm 3.3. Choose an arbitrary initial value x_{1}\in \mathcal{C} . Assume x_{n} has been constructed. Compute
\begin{eqnarray} \begin{split} \;& z_{n} = \mathcal{P}_{\mathcal{C}}(x_{n}-\varsigma_{n}\mathcal{A}x_{n}),\\ \;&x_{n+1} = \mathcal{P}_{\mathcal{C}}((1-\alpha_{n})(x_{n}-\varsigma_{n}\mathcal{A}z_{n})), \\ \end{split} \end{eqnarray} | (3.30) |
where \{\alpha_{n}\} is a sequence in (0, 1) and \varsigma_{n} is a sequence in (0, \frac{1}{L}) .
Theorem 3.3. If \hat{\Omega}\neq\emptyset and the following conditions are satisfied:
( C_{1} ) lim_{n\rightarrow \infty}\alpha_{n} = 0\ and\ \sum^{\infty}_{n = 0}\alpha_{n} = \infty ;
( C_{2} ) 0 < \liminf_{n\rightarrow \infty}\varsigma_{n}\leq \limsup_{n\rightarrow \infty}\varsigma_{n} < \frac{1}{L} ;
Then, the iterative sequence \{x_{n}\} defined by Eq (3.30) strongly converges to the minimum-norm solution \hat{x}( = \mathcal{P}_{\Omega}\theta) , where \hat{\Omega} = \{\hat{x}|\hat{x}\in VI(\mathcal{A}, \mathcal{C})\}\neq\emptyset.
In this section, we present some numerical examples to illustrate our main results. The MATLAB codes run in MATLAB version 9.5 (R2018b) on a PC Intel(R) Core(TM)i5-6200 CPU @ 2.30 GHz 2.40 GHz, RAM 8.00 GB. In all examples y -axes shows the value of \|x_{n+1}-x_{n}\| while the x -axis indicates to the number of iterations.
Example 4.1. Let \mathcal{H}_{1} = \mathcal{H}_{2} = R^{n} . The feasible set is defined as:
\mathcal{C}: = \{x\in R^{n}:\|x\|\leq1\}. |
Let G:R^{n}\rightarrow R^{n} is a linear operator defined by:
\mathcal{A}x: = Gx |
for all x\in R^{n} , where G = (g_{ij})_{1\leq i, j \leq n} is a matrix in R^{n\times n} whose terms are given by:
\begin{equation} g_{ij} = \left\{ \begin{aligned} &-1,\ & \mathrm{if}\ j = n+1-i\ \mathrm{and}\ j > i, \\ &1,\ & \mathrm{if}\ j = n+1-i\ \mathrm{and}\ j < i, \\ &0,\ & \mathrm{otherwise}. \\ \end{aligned} \right. \end{equation} | (4.1) |
It is obvious that \mathcal{A} is \|G\| -Lipschitz continuous. By a direct calculation, we also have that \langle \mathcal{A}x, x\rangle = \langle Gx, x\rangle = 0 and so, \mathcal{A} is monotone. Let \mathcal{B} be a matrix in R^{n\times n} which is randomly generated.
Taking cognizance of the difference of the problems handled by Algorithm 3.1 and Algorithm in Tian and Jiang [24], in order to comparing these two algorithms, we make a very small modification to the one in [24] such that it can also solve the problem (1.8). The modified algorithm can be written as follows:
Algorithm 4.1.
\begin{eqnarray} \begin{split} \;& y_{n} = x_{n}-\tau_{n} \mathcal{B}^\ast(I-\mathcal{W}_{n})\mathcal{B}x_{n},\\ \;& z_{n} = \mathcal{P}_{\mathcal{C}}(y_{n}-\varsigma_{n}\mathcal{A}y_{n}),\\ \;&x_{n+1} = \mathcal{P}_{\mathcal{C}}((1-\alpha_{n})(y_{n}-\varsigma_{n}\mathcal{A}z_{n})), \\ \end{split} \end{eqnarray} | (4.2) |
According to the proof of Theorem 3.1, we can easily verify that this modified algorithm works for solving (1.8). The values of control parameters in these two Algorithms are \varsigma_{n} = \frac{1}{2\|G\|} , \tau_{n} = \frac{1}{2\|B\|^{2}} , \alpha_{1} = \frac{1}{2} , \alpha_{n} = \frac{1}{n} (for all n\geq2 ), \lambda_{n} = \frac{1}{n+1} and x_{1} = (1, \cdots, 1)^{T} , and the infinite family of nonexpansive mappings \{\mathcal{T}_{k}\}^{\infty}_{k = 1}:R^{n}\rightarrow R^{n} is defined by:
\mathcal{T}_{k}x: = M_{k}x, |
for all x\in R^{n} , where \{M_{k}\} is a sequence of diagonal matrixes in R^{n\times n} :
\begin{equation} M_{k} = \left[ \begin{array}{ccccc} 1-\frac{1}{k+2} &\ &\ &\ &\ \\ \ &1-\frac{1}{k+2} &\ &\ &\ \\ \ &\ &\ddots &\ &\ \\ \ &\ &\ &1-\frac{1}{k+2} &\ \\ \ &\ &\ &\ &1-\frac{1}{k+3}\\ \end{array} \right ]. \end{equation} | (4.3) |
The numerical results of the Example 4.1 are reported in Table 1 and Figures 1–4 by using the stopping criterion \|x_{n+1}-x_{n}\|\leq10^{-10} .
No. of Iter. | Time | |||
n | Alg. 3.1 | Alg. 4.1 | Alg. 3.1 | Alg. 4.1 |
2 | 120 | 154 | 0.288s | 1.133s |
10 | 156 | 201 | 0.691s | 2.516s |
50 | 157 | 202 | 4.641s | 13.853s |
100 | 157 | 203 | 12.333s | 53.145s |
Example 4.2. Let \mathcal{H}_{1} = \mathcal{H}_{2} = L^{2}([0, 1]) with the inner product:
\langle x,y\rangle = \int^{1}_{0}x(t)y(t)dt |
and the induced norm:
\|x\|: = (\int^{1}_{0}x^{2}(t)dt)^{\frac{1}{2}}. |
The feasible set is defined as:
\mathcal{C}: = \{x\in R^{n}:\|x\|\leq1\}. |
The mapping \mathcal{A}:L^{2}([0, 1])\rightarrow L^{2}([0, 1]) is defined by:
\mathcal{A}x(t): = (1+t)\max\{0,x(t)\} = (1+t)\frac{x(t)+|x(t)|}{2},\ x\in L^{2}([0,1]). |
It is easy to see that
\begin{eqnarray} \begin{split} \langle \mathcal{A}x\;-\mathcal{A}y,x-y\rangle& = \int^{1}_{0}(\mathcal{A}x(t)-\mathcal{A}y(t))(x(t)-y(t))dt \\ \;& = \int^{1}_{0}(1+t)\frac{x(t)-y(t)+|x(t)|-|y(t)|}{2}(x(t)-y(t))dt \\ \;& = \int^{1}_{0}\frac{1}{2}(1+t)((x(t)-y(t))^{2}+(|x(t)|-|y(t)|)(x(t)-y(t)))dt \\ \;&\geq0\\ \end{split} \end{eqnarray} | (4.4) |
and
\begin{eqnarray} \begin{split} \|\mathcal{A}x-\mathcal{A}y\|^{2} \;& = \int^{1}_{0}(\mathcal{A}x(t)-\mathcal{A}y(t))^{2}dt \\ \;& = \int^{1}_{0}(1+t)^{2}\frac{(x(t)-y(t)+|x(t)|-|y(t)|)^{2}}{4}dt \\ \;& = \int^{1}_{0}(1+t)^{2}(x(t)-y(t))^{2}dt \\ \;&\leq4\|x-y\|^{2}.\\ \end{split} \end{eqnarray} | (4.5) |
Therefore, the operator \mathcal{A} is monotone and 2 -Lipschitz continuous. Let \mathcal{W}_{n} = \mathcal{I} (Identity mapping). The values of control parameters for Algorithm 4.1 and Algorithm 3.1 are \varsigma_{n} = \frac{1}{4} , \alpha_{1} = \frac{1}{2} , \alpha_{n} = \frac{1}{n} (for all n\geq2 ), \lambda_{n} = \frac{1}{n+1} and x_{1} = 8t^{2} . It can be seen easily that \{x_{n}\} strongly converges to the zero vector \theta(\in L^{2}([0, 1])). The numerical results of the Example 4.2 are reported in Table 2 and Figures 5 by using the stopping criterion \|x_{n+1}-x_{n}\|\leq\varepsilon = 0.01 .
No. of Iter. | Time | |||
\varepsilon | Alg. 3.1 | Alg. 4.1 | Alg. 3.1 | Alg. 4.1 |
0.01 | 8 | 13 | 0.678s | 79.280s |
Remark 4.1. The numerical results of Example 4.1 and Example 4.2 show that the performance of Algorithm 3.1 is better than Algorithm 4.1 both in CPU time and the number of iterations. Algorithm 3.1 is more effective in both finite and infinite dimensional spaces and especially in conditions involving complex projection calculations, see Tables 1, 2 and Figures 1–5. In Example 4.1, we observe that the number of iterations tends to be stable, while the CPU time increases, as n increasing.
In the present paper, we consider variational inequality problems and split common fixed point problems. We construct an iterative algorithm for solving Eq (1.8) which can be regard as a modification and generalization of Algorithm 1.1 with fewer metric projection operators. Under some mild restrictions, we demonstrate the strong convergence analysis of the presented algorithm. We also give some numerical examples to illustrate our main results. Noticeably, in our article, \mathcal{A} is assumed to a monotone and L -Lipschitz continuous mapping. A natural question arises: how to weaken this assumption?
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by National Natural Science Foundation of China under Grant (No. 62103289), National Natural Science Foundation of China (No. 11761074), Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project (No. 20200301053RQ), and Natural Science Foundation of Jilin Province(No. 2020122336JC).
The authors declare no conflict of interest.
[1] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 |
[3] |
I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
![]() |
[4] | V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 |
[5] | B. Zhu, Z. S. Xu, M. M. Xia, Dual hesitant fuzzy sets, J. Appl. Math., 2012 (2012), 879629. https://doi.org/10.1155/2012/879629 |
[6] |
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
![]() |
[7] | M. Yazdi, Linguistic methods under fuzzy information in system safety and reliability analysis, In: Studies in Fuzziness and Soft Computing, Springer Cham, 414 (2022). https://doi.org/10.1007/978-3-030-93352-4 |
[8] | H. Li, M. Yazdi, Advanced decision-making methods and applications in system safety and reliability problems, In: Studies in Systems, Decision and Control, Springer Cham, 211 (2022). https://doi.org/10.1007/978-3-031-07430-1 |
[9] |
Z. S. Xu, Induced uncertain linguistic OWA operators applied to group decision making, Inform. Fusion, 7 (2006), 231–238. https://doi.org/10.1016/j.inffus.2004.06.005 doi: 10.1016/j.inffus.2004.06.005
![]() |
[10] |
R. M. Rodriguez, L. Martinez, F. Herrera, Hesitant fuzzy linguistic term sets for decision making, IEEE T. Fuzzy Syst., 20 (2012), 109–119. https://doi.org/10.1109/TFUZZ.2011.2170076 doi: 10.1109/TFUZZ.2011.2170076
![]() |
[11] |
H. Wang, Extended hesitant fuzzy linguistic term sets and their aggregation in group decision making, Int. J. Comput. Intell. Syst., 8 (2015), 14–33. https://doi.org/10.1080/18756891.2014.964010 doi: 10.1080/18756891.2014.964010
![]() |
[12] |
H. Wang, Z. S. Xu, X. J. Zeng, Linguistic terms with weakened hedges: A model for qualitative decision making under uncertainty, Inform. Sci., 433–434 (2018), 37–54. https://doi.org/10.1016/j.ins.2017.12.036 doi: 10.1016/j.ins.2017.12.036
![]() |
[13] |
S. Karimi, K. N. Papamichail, C. P. Holland, The effect of prior knowledge and decision-making style on the online purchase decision-making process: A typology of consumer shopping behaviour, Decis. Support Syst., 77 (2015), 137–147. https://doi.org/10.1016/j.dss.2015.06.004 doi: 10.1016/j.dss.2015.06.004
![]() |
[14] |
S. Heblich, A. Lameli, G. Riener, The effect of perceived regional accents on individual economic behavior: A lab experiment on linguistic performance, cognitive ratings and economic decisions, Plos One, 10 (2015), e0113475. https://doi.org/10.1371/journal.pone.0113475 doi: 10.1371/journal.pone.0113475
![]() |
[15] | V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 |
[16] |
Q. Pang, H. Wang, Z. S. Xu, Probabilistic linguistic term sets in multi-attribute group decision making, Inform. Sci., 369 (2016), 128–143. https://doi.org/10.1016/j.ins.2016.06.021 doi: 10.1016/j.ins.2016.06.021
![]() |
[17] |
P. D. Liu, F. Teng, Multiple attribute group decision making methods based on some normal neutrosophic number Heronian Mean operators, J. Intell. Fuzzy Syst., 32 (2017), 2375–2391. https://doi.org/10.3233/JIFS-16345 doi: 10.3233/JIFS-16345
![]() |
[18] | M. Qiyas, S. Abdullah, Y. Liu, M. Naeem, Multi-criteria decision support systems based on linguistic intuitionistic cubic fuzzy aggregation operators, J. Amb. Intel. Hum. Comp., 12 (2022), 8285–8303. |
[19] |
M. Qiyas, T. Madrar, S. Khan, S. Abdullah, T. Botmart, Decision support system based on fuzzy credibility Dombi aggregation operators and modified TOPSIS method, AIMS Mathematics, 10 (2022), 19057–19082. https://doi.org/10.3934/math.20221047 doi: 10.3934/math.20221047
![]() |
[20] |
M. Qiyas, N. Khan, M. Naeem, S. Abdullah, Intuitionistic fuzzy credibility Dombi aggregation operators and their application of railway train selection in Pakistan, AIMS Mathematics, 8 (2023), 6520–6542. https://doi.org/10.3934/math.2023329 doi: 10.3934/math.2023329
![]() |
[21] |
C. Maclaurin, A second letter to Martin Folkes, Esq.; concerning the roots of equations, with the demonstration of other rules in algebra, Phil. Transactions, 36 (1729), 59–96. https://doi.org/10.1098/rstl.1729.0011 doi: 10.1098/rstl.1729.0011
![]() |
[22] |
D. J. Yu, Hesitant fuzzy multi-criteria decision making methods based on Heronian mean, Technol. Econ. Dev. Eco., 23 (2017), 296–315. https://doi.org/10.3846/20294913.2015.1072755 doi: 10.3846/20294913.2015.1072755
![]() |
[23] |
J. D. Qin, X. W. Liu, Approaches to uncertain linguistic multiple attribute decision making based on dual Maclaurin symmetric mean, J. Intell. Fuzzy Syst., 29 (2015), 171–186. https://doi.org/10.3233/IFS-151584 doi: 10.3233/IFS-151584
![]() |
[24] | J. D. Qin, X. W. Liu, W. Pedrycz, Hesitant fuzzy Maclaurin symmetric mean operators and its application to multiple-attribute decision making, Int. J. Fuzzy Syst., 17 (2015), 509–520. |
[25] |
R. F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters, Proc. Edinb. Math. Soc., 21 (1902), 144–162. https://doi.org/10.1017/S001309150003460X doi: 10.1017/S001309150003460X
![]() |
[26] |
P. D. Liu, D. F. Li, Some muirhead mean operators for intuitionistic fuzzy numbers and their applications to group decision making, PloS One, 12 (2017), e0168767. https://doi.org/10.1371/journal.pone.0168767 doi: 10.1371/journal.pone.0168767
![]() |
[27] |
P. D. Liu, F. Teng, Some muirhead mean operators for probabilistic linguistic term sets and their applications to multiple attribute decision-making, Appl. Soft Comput. J., 68 (2018), 396–431 https://doi.org/10.1016/j.asoc.2018.03.027 doi: 10.1016/j.asoc.2018.03.027
![]() |
[28] |
G. Beliakov, S. James, J. Mordelová, T. Rückschlossová, R. R. Yager, Generalized Bonferroni mean operators in multi-criteria aggregation, Fuzzy Sets Syst., 161 (2010), 2227-2242. https://doi.org/10.1016/j.fss.2010.04.004 doi: 10.1016/j.fss.2010.04.004
![]() |
[29] |
Y. D. He, Z. He, H. Y. Chen, Intuitionistic fuzzy interaction Bonferroni means and its application to multiple attribute decision making, IEEE Trans. Cybernetics, 45 (2015), 116–128. https://doi.org/10.1109/TCYB.2014.2320910 doi: 10.1109/TCYB.2014.2320910
![]() |
[30] |
Z. S. Xu, R. R. Yager, Intuitionistic fuzzy Bonferroni means, IEEE Trans. Syst. Man Cy. B, 41 (2011), 568–578. https://doi.org/10.1109/TSMCB.2010.2072918 doi: 10.1109/TSMCB.2010.2072918
![]() |
[31] |
P. D. Liu, S. M. Chen, Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers, IEEE Trans. Cybernetics, 47 (2016), 2514–2530. https://doi.org/10.1109/TCYB.2016. 2634599 doi: 10.1109/TCYB.2016.2634599
![]() |
[32] | J. D. Qin, X. W. Liu, An approach to intuitionistic fuzzy multiple attribute decision making based on Maclaurin symmetric mean operators, J. Intell. Fuzzy Syst., 27 (2014), 2177–2190. |
[33] |
P. D. Liu, X. H. Zhang, Some Maclaurin symmetric mean operators for single-valued trapezoidal neutrosophic numbers and their applications to group decision making, Int. J. Fuzzy Syst., 20 (2018), 45–61 https://doi.org/10.1007/s40815-017-0335-9 doi: 10.1007/s40815-017-0335-9
![]() |
[34] | Y. B. Ju, X. Y. Liu, D. W. Ju, Some new intuitionistic linguistic aggregation operators based on Maclaurin symmetric mean and their applications to multiple attribute group decision making, Soft Comput., 20 (2016), 4521–4548. |
[35] |
D. Detemple, J. Robertson, On generalized symmetric means of two variables, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 634 (1979), 236–238 https://doi:10.1002/anie.200704684 doi: 10.1002/anie.200704684
![]() |
[36] |
F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: steps for solving decision problems under linguistic information, Fuzzy Sets Syst., 115 (2000), 67–82. https://doi.org/10.1016/S0165-0114(99)00024-X doi: 10.1016/S0165-0114(99)00024-X
![]() |
[37] | X. Gou, Z. Xu, H. Liao, Multiple criteria decision making based on Bonferroni means with hesitant fuzzy linguistic information, Soft Comput., 21 (2017), 6515–6529. |
[38] | E. P. Klement, R. Mesiar, E. Pap, Triangular norms, In: Trends in Logic, Springer Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9540-7 |
[39] |
K. X. Zhao, X. J. Huang, Probabilistic linguistic hesitant fuzzy set and its application in multiple attribute decision-making, J. Nanchang Univ. (Natural Sci.), 41 (2017), 511–518. https://doi.org/10.3969/j.issn.1006-0464.2017.06.001 doi: 10.3969/j.issn.1006-0464.2017.06.001
![]() |
[40] |
B. Fang, B. Han, D. Y. Xie, Probabilistic linguistic multi-attribute decision-making method based on possibility degree matrix, Control Decis., 37 (2022), 2149–2156. https://doi.org/10.13195/j.kzyjc.2021.0350 doi: 10.13195/j.kzyjc.2021.0350
![]() |
No. of Iter. | Time | |||
n | Alg. 3.1 | Alg. 4.1 | Alg. 3.1 | Alg. 4.1 |
2 | 120 | 154 | 0.288s | 1.133s |
10 | 156 | 201 | 0.691s | 2.516s |
50 | 157 | 202 | 4.641s | 13.853s |
100 | 157 | 203 | 12.333s | 53.145s |
No. of Iter. | Time | |||
\varepsilon | Alg. 3.1 | Alg. 4.1 | Alg. 3.1 | Alg. 4.1 |
0.01 | 8 | 13 | 0.678s | 79.280s |