Research article

A result about the atomic decomposition of Bloch-type space in the polydisk

  • Received: 17 October 2022 Revised: 23 February 2023 Accepted: 23 February 2023 Published: 06 March 2023
  • MSC : 47B38, 47B33, 47B37, 30H05

  • The aim of the paper is to obtain a interesting result about the atomic decomposition of Bloch-type space in the polydisk. The existing similar results have been applied many times to the atomic decompositions of Bloch-type and weighted Bergman spaces in the unit ball.

    Citation: Zhi-jie Jiang. A result about the atomic decomposition of Bloch-type space in the polydisk[J]. AIMS Mathematics, 2023, 8(5): 10822-10834. doi: 10.3934/math.2023549

    Related Papers:

  • The aim of the paper is to obtain a interesting result about the atomic decomposition of Bloch-type space in the polydisk. The existing similar results have been applied many times to the atomic decompositions of Bloch-type and weighted Bergman spaces in the unit ball.



    加载中


    [1] A. Aleman, O. Constantin, Spectra of integration operators on weighted Bergman spaces, J. Anal. Math., 109 (2009), 199–231. http://dx.doi.org/10.1007/s11854-009-0031-2 doi: 10.1007/s11854-009-0031-2
    [2] R. Coifman, R. Rochberg, Representation theorems for holomorphic and harmonic function in $L^p$, Asterisque, 77 (1980), 11–66.
    [3] Z. S. Fang, Z. H. Zhou, Extended Cesáro operators from generally weighted Bloch spaces to Zygmund space, J. Math. Anal. Appl., 359 (2009), 499–507. http://dx.doi.org/10.1016/j.jmaa.2009.06.013 doi: 10.1016/j.jmaa.2009.06.013
    [4] M. Jevitć, Bounded projections and duality in mixed-norm spaces of analytic functions, Complex Var. Elliptic Equ., 8 (1987), 293–301. http://dx.doi.org/10.1080/17476938708814239 doi: 10.1080/17476938708814239
    [5] A. Harutyunyan, Bloch spaces of holomorphic functions in the polydisk, J. Funct. Space. Appl., 5 (2007), 213–230. http://dx.doi.org/10.1155/2007/353959 doi: 10.1155/2007/353959
    [6] Z. J. Hu, Composition operators between Bloch-type spaces in the polydisk, Sci. China Ser. A, 48 (2005), 268–282.
    [7] C. S. Huang, Z. J. Jiang, Y. F. Xue, Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball, AIMS Math., 7 (2022), 18194–18217.
    [8] C. S. Huang, Z. J. Jiang, Product-type operators from weighted Bergman-Orlicz spaces to weighted-type spaces on the unit ball, J. Math. Anal. Appl., 519 (2023), 126739.
    [9] Z. J. Jiang, On Volterra composition operators from Bergman-type space to Bloch-type space, Czech. Math. J., 61 (2011), 993–1005. http://dx.doi.org/10.1007/s10587-011-0042-x doi: 10.1007/s10587-011-0042-x
    [10] Z. J. Jiang, On a product-type operator from weighted Bergman-Orlicz space to some weighted-type spaces, Appl. Math. Comput., 256 (2015), 37–51. http://dx.doi.org/10.1016/j.amc.2015.01.025 doi: 10.1016/j.amc.2015.01.025
    [11] Z. J. Jiang, X. F. Wang, Products of radial derivative and weighted composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces, Oper. Matrices, 12 (2018), 301–319. http://dx.doi.org/10.7153/oam-2018-12-20 doi: 10.7153/oam-2018-12-20
    [12] H. Y. Li, H. X. Zhang, Volterra composition operators from generally weighted Bloch spaces to Bloch-type spaces on the unit ball, J. Nonlinear Sci. Appl., 5 (2012), 412–417.
    [13] J. Pau, J. A. Peláez, Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal., 259 (2010), 2727–2756. http://dx.doi.org/10.1016/j.jfa.2010.06.019 doi: 10.1016/j.jfa.2010.06.019
    [14] J. Peláez, J. Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc., 227 (2014), 1–136. http://dx.doi.org/10.1090/memo/1066 doi: 10.1090/memo/1066
    [15] J. Peláez, J. Rättyä, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann., 362 (2015), 205–239. http://dx.doi.org/10.1007/S00208-014-1108-5 doi: 10.1007/S00208-014-1108-5
    [16] W. Rudin, Function theory in the unit ball of $ {\mathbb C}^n$, Springer, New York, 1980. http://dx.doi.org/10.1007/978-1-4613-8098-6
    [17] A. L. Shields, D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, T. Am. Math. Soc., 162 (1971), 287–302. http://dx.doi.org/10.1090/S0002-9947-1971-0283559-3 doi: 10.1090/S0002-9947-1971-0283559-3
    [18] E. Saukko, An application of atomic decomposition in Bergman spaces to the study of differences of composition operators, J. Funct. Anal., 262 (2012), 3872–3890. http://dx.doi.org/10.1016/j.jfa.2012.02.003 doi: 10.1016/j.jfa.2012.02.003
    [19] S. Stević, On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Appl. Math. Comput., 206 (2008), 313–320. http://dx.doi.org/10.1016/j.amc.2008.09.002 doi: 10.1016/j.amc.2008.09.002
    [20] S. Stević, Norm and essential norm of an integral-type operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Math. Meth. Appl. Sci., 2022, 1–11.
    [21] S. Stević, Z. J. Jiang, Weighted iterated radial composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces on the unit ball, Math. Meth. Appl. Sci., 44 (2021), 8684–8696. http://dx.doi.org/10.1002/mma.7298 doi: 10.1002/mma.7298
    [22] S. Stević, Z. J. Jiang, Weighted iterated radial composition operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, Math. Meth. Appl. Sci., 45 (2021), 3083–3097. http://dx.doi.org/10.1002/mma.7978 doi: 10.1002/mma.7978
    [23] S. Stević, Z. J. Jiang, Differences of weighted composition operators on the unit polydisk, Siberian Math. J., 52 (2011), 358–371. http://dx.doi.org/10.1134/S0037446611020200 doi: 10.1134/S0037446611020200
    [24] S. Stević, C. S. Huang, Z. J. Jiang, Sum of some product-type operators from Hardy spaces to weighted-type spaces on the unit ball, Math. Meth. Appl. Sci., 2022, 1–20. http://dx.doi.org/10.1002/mma.8467
    [25] J. H. Shi, Duality and multipliers for mixed norm spaces in the ball (I), Complex Var. Elliptic Equ., 25 (1994), 119–130. http://dx.doi.org/10.1080/17476939408814736 doi: 10.1080/17476939408814736
    [26] X. J. Zhang, L. H. Xi, H. X. Fan, Atomic decomposition of $\mu$-Bergman space in $ {\mathbb C}^n$, Acta Math Sci, 34 (2014), 779–789. http://dx.doi.org/10.1016/S0252-9602(14)60048-5 doi: 10.1016/S0252-9602(14)60048-5
    [27] X. J. Zhang, M. Li, Y. Guan, Atomic decomposition for $\mu$-Bloch space in $ {\mathbb C}^n$ (in Chinese), Sci. Sin. Math., 45 (2015), 1677–1688.
    [28] K. H. Zhu, Spaces of holomorphic functions in the unit ball, Springer, New York, 2005.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1089) PDF downloads(69) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog