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1. Introduction

Let C be the complex plane. Denote by D(a,r) the open disk in C centered at a with radius r,
by CV the N-dimensional complex Euclidean space with the inner product (z, w) = Z;V: 1Zjwj, by D
the open unit disk in C, by DV the open unit polydisk in C", and by B" the open unit ball in CV.
For given z € CV, write |z, = max< j<nlzjl. Let H (D") be the space of all holomorphic functions
on DV and H*(D") the space of all bounded holomorphic functions on DV with the supremum norm
1flleo = SUP_pw [ £

A positive continuous radial function u on the interval [0, 1) is called normal (see, for example, [9]),
if there are A € [0,1), a and b (0 < a < b) such that

u(r) u(r)

(1 —r) is decreasing on [4,1), lim (—ry "
(1ﬂ£r2)b is increasing on [4, 1), 1}311(1#5? P

For such function, the following examples were given in [9]:

pu(r) = (1=r")", a € (0, +o),
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a-—1

p(r) = (1=r)*{log2(1 =)'V, @€ (0,1), Be| log2,0],

and
~1
u(r) = (1 = #yfloglog (1 — )1y, ae©,1), ye[Z

log2,0].

The following fact can be used to prove that there exist lots of non-normal functions. It follows
from [14] that if x4 is normal, then for each s € (0, 1) there exists a positive constant C = C(s) such that

C™'u(t) < pu(r) < Cu(r) (1.1)

forO<r<t<r+s(l-r).From(1.1),itis easy to check the following functions are non-normal

)

p(r) = |sin (log Ve(r) + 1

1
1-r

and

)

1-r e

u(r) = | sin (log

where
1

€ o
vo(r) = [(1 = A(log =)™,
-r
The functions {u, v} will be called a normal pair if ¢ is normal and for b in above definition of
normal function, there exists S > b such that

p(rv(r) = (1 =12y,

If u is normal, then there exists v such that {u, v} is normal pair (see [17]). Note that if {u, v} is a normal
pair, then v is also normal. One of the purposes of introducing normal pair is to characterize the duality
of spaces defined by the normal function (see [4,25]).

Given a normal function y, the Bloch-type space B“(DN ) consists of all £ € H(D") such that

N

0
B = sup Y (a5 )] < e

A=

Endowed with the norm [|f{lg,ov) = [f(0)] + B.(f), it is a Banach space. There were a handful of
studies on the space B,(DY) (see, for example, [5, 6]). But the spaces with some special normal
functions defined on the unit ball or unit disk and some operators have been extensively studied (see,
for example, [3, 12, 19,20, 28], where [28] contains the elementary knowledge of such space).

Given a normal function y, the weighted-type space Hl‘f’(DN ) consists of all f € H(D) such that

N
A lgem = sup | | u@olf .. ...an)] < +oo.

zeDN k=1

HY (DV) is a Banach space with the norm || - || HE(DV)- There are lots of studies about such spaces on the
unit ball or unit disk and some operators (see, for example, [7,8,10,11,21,22,24]).
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LetdA(z) = }Ta’xdy be the normalized Lebesgue measure on D and dA,(z) = (a+1)(1—|z]*)*dA(z) the
weighted Lebesgue measure on D, where —1 < @ < +c0. For given @ = (a1, ...,ay), =1 < @; < +00,
j=1,...,N,and 0 < p < +o00o, the weighted Bergman space Ag(DN ) consists of all f € H(D") such
that

1o, = fD f@PdAL) < +eo,

where dA(z) = dA,,(21) .. oy (2n). For some information about this space, see, for example, [23].
When p > 1, the weighted Bergman space with the norm || - ||4»pv) becomes a Banach space. While
p € (0, 1), it is a Fréchet space with the translation invariant metric

d(f.8) = IIf = &l o,

The reason why people study the atomic decompositions for holomorphic function spaces is that it
is very useful in operator theory. In particular, it can be used to describe dual spaces or to study basic
questions such as the boundedness, the compactness or the Schatten class membership of concrete
operators (see, for example, [1, 13—15, 18]). The atomic decompositions for holomorphic function
spaces have been studied. For example, Coifman and Rochberg in [2] studied this problem on the
weighted Bergman space. Zhu in [28] modified the proof of [2] and gave the atomic decomposition
for the weighted Bloch space on the unit ball. Motivated by the previous studies, Zhang et al. in [26]
characterized the atomic decomposition for the u-Bergman space on the unit ball. Later, Zhang et
al. in [27] also considered the atomic decomposition for u-Bloch space on the unit ball. The works
of [26,27] extended the corresponding results in [28].

We find that in above-mentioned works, the following result have been used many times in the
atomic decompositions (see [28] for some details):

For any p > 0 and @ > —1, there exists a positive constant C independent of the separation constants
r and 7 such that

|ak|2)(pb—N—1—(z)/p

= (1~ f :
-S C Pdv,
f@ -5 f@) < a; T p Uy, 0 dvaw)

forall r € (0,1), z € BY and f € H(BY), where o is some constant related to r and 1, and the operator
S on H(BY) is defined by

N J
Sfy =y Y PR e/ (1.2)

L (1= ag)

A very natural problem is to extend this useful result to some other domains in CV. For example,
here we will consider the result on DV. Another reason of our extension is that DV and B" are
completely different domains in CV (see, for example, [16]), which may produce some differences
in methods and techniques.

In this paper, positive numbers are denoted by C, and they may vary in different situations. The
notation a < b (resp. a 2 b) means that there is a positive number C such that a < Cb (resp. a > Cb).
When a < band b > a, we write a < b.
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2. Preliminary results

In this section, we will obtain several elementary results which are used to prove the main results.
We first have the following basic one (see, for example, [28]).

Lemma 2.1. There exists a positive integer N such that forany O < r < 1, we can find a sequence {a;}
in D and a set {Dy} consisting of Lebesgue measurable sets satisfying the following conditions:

(1) D = U2, D(a, r);

(2) Dy D; =0 fork # j;

(3) D(ay, 7) C Dy C D(ay, r) for every k € N;

(4) Each point z € D belongs to at most N of the sets D(ay, 4r).

Let 7 = (ry,...,ry), 0 <r; <1, j=1,...,N. Then for each fixed r; there exist a sequence {a j}
and a set {D} satisfy Lemma 2.1. For convenience, we denote by a; = (ay,...,ani), by D(a, 7) =
D(ayi, r1) X - -+ X D(ay, ry), and by Dy = Dyg X -+ X Dy

By using Lemma 2.1, we obtain the following similar disjoint decomposition of DY

Lemma 2.2. There exists a positive integer N such that for any ¥ = (ry,...,ry), 0 <r; <1, j =
1,...,N, we can find a sequence {ay} in DV and a set {Ek} consisting of Lebesgue measurable sets
satisfying the following conditions:

(1) DN = Uk lD(ak, P);

(2) Dy ﬂD, =0 fork + j;

(3) D(ay, }j’) c D, C D(ay, P) for every k € N;

(4) Each point z € DV belongs to at most NN sets D(ay, 47).

The following integral expression for the functions in AL(B") is well known (see [28]).

Lemma 2.3. Ifa > —1 and f € AL(B"), then

(W)dva(w)
f@) = / e
gy (1 =z, w))e*+N*
Let x* = (x1,...,xj-1) and x, = (Xj41,...,xy), j = 1,...,N. As an application of Lemma 2.3 for
N = 1,if we regard the function f(zy, ..., zy) € AL(D") as a one-variable function f(z*, z;,2.) € A}Y],(D),
j=1,...,N, then we have the following integral expression on A é(DN ).

Lemma24. Ifa; > -1, j=1,...,N, and f EA}?(DN), then

dAg
f‘)‘f Hf(w) )

(1 =Wzt

Remark 2.1. In order to obtain Theorem 3.1, we need give a key decomposition for DV. We first further
partition the sets {Dk} in Lemma 2.2. Actually, we partition the set D, and use automorphisms to carry
the partition to other Dk s. To this end, we let 7 = (11, . . ., nv), Where each 7; denotes a positive number
that is much smaller than the separation constant r; in 7 = (ry, ..., ry), in the sense that the quotient
n;/r;is small. We fix a finite sequence {z;, ..., zs} in 5(0, 7), depending on 7j, such that {B(Zj, 1)} covers
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5(0, 7) and that {E(Z i }Lﬁ)} are disjoint. We then can enlarge each set B(z i %77’) N 5(0, 7) to a Borel set
E; in the way that E; C E(Zj, 1) and that

J
aaﬂzkjg
=1

is a disjoint union. Here we just give a instruction. If you would like, you can see the proof of
Lemma 2.28 in [28] for how to achieve this.
Letw = (wy,...,wy) € DV and ¢,,(z) be the involutive automorphism of DV. Then

©w(2) = (0w, (21), - - - s @uy(@n)),

where
Wi—2Zj

wi(2)) =
ow;(z)) = T

is the involutive automorphism of D.

For fixed j € {1,...,J}and ax = (ai, ..., anx), we define b = ¢, (z;). Forl € {1, ..., N}, we define
E;;={z €D : (" z,2.) € E;}. Let Bjjr = Dy N @y, (Ej;), where sets {Dy} are in Lemma 2.1 for {ay}

and/ € {l1,...,N}. Since
J
Dy, = UBljk
j=1

is a disjoint union for every / and k, we obtain a disjoint decomposition

co J
" =UJUBx
k=1 j=1

of DV, where Ejk is the Cartesian product of B, [ =1,...,N.

By using the decomposition of DV, we give the following definition, which is similar to those
of (1.2).

Definition 2.1. Let b, > 1 and 8, = b; — 2,1 =1,...,N. Then the operator S on H(D") is defined by

© L AB)f(bix)
G\ jk j
S .
- Z]Z; [y, _lekZl)b’

Remark 2.2. From the definition of dAE, it follows that

N
AgBo) = | | As B
=1
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3. Main results and proofs

After discussions in Part 2, we now return to the following result.

Theorem 3.1. For p > 0, o; > -1, 1 = 1,..., N, there exists a positive constant C independent of the
separation constants 7, ij, f € HD") and z € DV, such that

_ 2
— lan?) = (

1 1
f@ - S f@)| < Co ZH’ 1 fﬁ ( zjlf(w)lpdA&(W))”

L = apz|
forall = (ri,...,ry), 0<r;<1,1=1,...,N, where
|77—),| / =
O=————>+ThIn, = tanh(r;), 17’ = (tanh(,), ..., tanh(ny)),
iy rh

and tanh(:) is the hyperbolic tangent function.

Proof. Without loss of generality, we may assume that f € AE(DN ). By the integral expression of the

functions in A E(DN ), we have

Fw)dAy )

1@ = ov [T, (1 =Wz

Since {Ejk} is a partition of DV, we can write

0 J
Sw) S bj)
(2)-Sf(2)= — - = dAz(w). (3.1)
Je 1@ Z;Z:: B [T, (1 — Wiz Hﬁl(l—bljkzl)b’] Y

Since Ejk is the Cartesian product of By, [ = 1,..., N, it follows that

ﬁ dAy(w) = f f f dAy(w). (3.2)
Biji Byjk v Bajk By jk

J!

By using the triangle inequality in (3.1), we have

1f) =S f@)] < 1) + H(2),

where by (3.2) we get

o J
I(z) = by)|dA
(Z Zl Z] H |1 — b[ij1| ! jl_;ljk ft;zjk «fBNﬂ\ |f(W) f( Jk)| E(W)

and

J
H(z) =

1 1Y, (1 = bz
- f f | e el 1“f(w)|dAﬁ»(w).
1 H1=1 11— blijl|b’ Biji Y Bajk By jk H1:1(1 —wiz)”
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We first estimate /(z). Let

I = f f f |FOw) = f(bj0|dAZ(w). (3.3)
Bijik v Baji By jk
By a change of variables in (3.3), we have
N
|f © ‘ij (W) - f © (,Dbj (0)|
Lic= [ [ = bl f f f T ——dA(w), (3.4)
I=1 Eyji JEaji Enji [T 11— bljkW1|2b’

where

Ejjk = @, (Biji) € @y © Pay(Erj) C Py © Pay (D(z1,m1)
= SDbIjk(D(bljk’ 771)) = D(09 T]l)

For w; € Ejji, the quantities (1 — [w,|?)Pi*? and |1 — El i«wi| are both bounded from below and from above.
Also, since each by € D(ay, r;), the quantities 1 — |b, jkl2 and 1 — |ay|? are comparable. Therefore, there
exists a positive constant C independent of 7 and 77, such that

Jk<cﬂ<1—|alk| L ot = Fogm, A (35)
Epji Y Esj Enjk

Write r; = tanh(r;), ; = tanh(r;). Since each 7; is much smaller than r; for / € {1, ..., N}, we may
as well assume that R = max; <y 7)/r] < % By Lemma 2.4, there exists a positive constant C such
that

1
Ve < C( f gIPdAW))", 12l < R,
DN

for g € HDV). Let Fo= (r},...,ry) and 77’ = (m},...,1my). Consider g(z) = h(ﬁz), where h(z) =
f oy, (2), rz= (r'z1,...,ryzn), z € DV. After a change of variables, we obtain

5 1 1
rr-rylVa(rz)| < C ”—f |[h(W)|IPdA(w))"
"2 N ((rzrz ) Jbog )

for all |z] < R. That is,

C 1
IVA(F2)| < p f lh(w)IPdA(w))" (3.6)
( . rN)1+2/P( 5(0’?) )
forall z € 5(0, i7). For any w € Ejk C 5(0, 77), the identity

N
h(w) — h(0) = f Z (tw)
=1

directly leads to

[h(w) = h(O)] < 7| sup {IVAu)| < u € D(O, 7). (3.7)
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From (3.5) and (3.7), we therefore have

N
Li < C71 | [ (1 = lawP)" A(E;0) sup (V@) - u € DO, ), (3.8)

=1

where I’::jk is the Cartesian product of E;, [ = 1,..., N. Combining (3.6) with (3.8), we obtain

Clp _) 1
s s _Chrl T ]‘[(1—|a,k| YA f ROnPAAG))' (3.9)

D(0,7)
By a change of variables again,
(= 1byl®)?
[ omopaaon= [ [ [ [[S . 340)
D(0.7) D(byj,r1) ¥ D(baji.r2) D(by jxrn) =1 1 - leWl|4

It is easy to see that the quantities 1 — |b,jk|2 and |1 — El j«wi| are both comparable to 1 — lay|* for w; €
D(byj, r;). This along with the fact that for each [ € {1, ..., N} it follows that D(b;j, ;) C D(ay, 2r;)

shows that
N 2
(1 — byl )
| Y ] T o
D(b1je.r1) JDbajir2) D(bwj.rw) 11— byjwil

=1

N
Tl N
<Cl | v lfW)IPdA(w).
l;l (1 - |alk|2)2 D(alk,2r1) D(a2k,2r2) D(aNk,ZrN)

Since 1 — |ay/|? is comparable to 1 — |w;|* for w; € D(ay, 2r;), we have

14 - |b1jel*)*
J(w) ﬂ ————dA(w)
(bljk r1) Y D(byjr.r2) D(byjk,rn) =1 |1 - leWll4
lfW)IPdAz(w). (3.11)
11—1[ (1- |alk|2)m+2 f(alk 2r1) f(azk 2r) j[;(uNk,ZrN)

From (3.9)—(3.11), we have

Cly| & pp = f .
1, < 1- = A(E : pdA@» P 312
K S T ];[( a7 ACE o o) w) (3.12)
Since
J . J N J N
ZA(Eﬂ«) = Z ﬂAz(Eij) < Z HA,(D(O, ) = I
J=1 j=1 =1 j=1 i=1
and

J J J N
ADO,7) = Y AE) 2 Y ADG;, M) = ) | |AdDGym) = Coning---n},

=1 =1 j=1 =1
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where the last inequality follows from Lemma 1.23 in [28], we have

J
D AEj) < CADO, 7)) = CODAHY - () (3.13)

=1
From (3.12) and (3.13), it follows that
: Clif| L
Sppe— ]_[a b F( [ ronpdagm)’
=1 i) Day.27)
Foreach k € Nand 1 < j < J, it follows from Lemma 2.27 in [28] for N = 1 that |1 — bljkzll I8

comparable to |1 — alkzllb’. Therefore

- o0 _a+?
Cliy'| [TY, (1 = lag)”

I(z) < .
2_ N —
(riry - ry)? b= T 11 —agzl™

1
([ ionrdasm)’.
D(ay,27)
Now we estimate H(z). Let

[T, (1 = bz
Hy = f f | RS | fw]dAgn.
Bijk ¥ Baji By jk H[:l(l — wizp)”

By Lemma 2.27 for N = 1 in [28], we have

N
ij < CI]]?]Q 1Y n(l - |b[jk|2)'8[ f f o f |f(W)|dA(W)
=1

Bijk v Baji By ji

From [23], there is a positive constant C independent of f € H(D") and z € D" such that

@I <

11( |l| )[ ( fW w

By the definition of B;j and since B ik 18 the Cartesian product of B, B1jk» [ =1,...,N, we deduce that
B ik C Dk, and then by Lemma 2.2 we further obtain that B ik C Dk C D(ak, 27). From this and replacing
z by a; in (3.14), for every w € B]k we have

C ;
fw)l < —( ﬁ Fw)PdAz(w))”
[T, (1 = lag?) ™7/ Dtax2n
Then
[T/, (1 = 1l !
Hy < Oy DL A G [ ipoordason)’
[T (1 = lawl) 7 7 Dl 27)
Since

J N
D AB) = ADy) < AD(a, P) < | [ (1= lauP),

Jj=1 I=1
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10831

we deduce that

[Fw)IPdAz(w))"

D(ay,27)

7 N 2

[T, (1 = byl
g Hy <Cmma...ny el ]Mz 2(f
J=1

MY, = a7 -

From above same reasons, we have seen that 1 — |b; jkl2 and 1 — |ay|* are comparable, and |1 — El izl and
|1 — ayz/| are also comparable. It follows that

aj+2
o TS (1= )™
H@) < Cnimy ..y ), —S——= (f

N — —~
=TT 11 =agzl Diay.,27)

[Fw)IPdAz(w))"

This completes the proof. O

As an important application of Theorem 3.1, we obtain the next result, which shows that the operator
I - S is bounded on H> (D).

Theorem 3.2. Let u be normal on [0, 1). Then there exist a positive constant C independent of f €
Hl‘f’(DN), 7 and 1j, such that

I = ) fllaz vy < Cllfllapoy).

Proof. We first choose @ = 0 and p = 1 in Theorem 3.1. Then we obtain

o [T = lagHP?
f@Q-Sf@I<Co) o2 | |f(w)ldA(w) (3.15)
=1 [T 11 —anzl™  ID.2n
for?=(ry,...,ry),0<r,<1,l=1,...,N,z€ D". From Lemma 2.3 for N = 1 in [26], there exists a
positive constant A; for each 0 </ < N such that
o M =agzl
A; ——— <A, (3.16)

N =wizl

Then, from (3.15) and (3.16), it follows that there exists a positive constant C independent of 7j and 7
such that

S 15,1 = w2
-5 <C dA
ICRC Y S e oA
N (1 _ Lo 12302
< oo [ =@ =Wl oo,

N J—
DN I_L:] 1 —wzlP

Which shows that

TV, (1 = w2 TN, u(z))
Hﬁl 11— wyz|b

N
[ [nelf@-ss@| <o | FOw)ldAw)
=1

AIMS Mathematics Volume 8, Issue 5, 10822—-10834.
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= TTY (1 = w2 T pz) T (wy)
L ({0210
DN H1:1 [T —wz|” H1:1,U(Wl)
TTY, (1= w22 T, uz)
dA
ov 1Y, 11 = Wizl TV, w(wy)
By Lemma 2.2 in [26], for each [ € {1, ..., N} we have

< CN" o ||l o) ) (3.17)

mz) < ( 1— |z )“ N ( 1—|zf )b.

uwy) M = |wy? 1 — |wf?
We therefore obtain
N N
1(zp) L=zl \ae 1=zl
< + . (3.18)
L (wy) ll:—l[ [(1 - |Wz|2) (1 - |W1|2) ]
For convenience, write
o lokp
=l

then from (3.17) and (3.18), we have that

N 1 _ o 2yi-2 N
[TL,(1=1Iwl?) l_[(x;z +x§’)dA(W)- (3.19)

N J—
Hl:] |1 - Wllebl =1

It is easy to see that there are 2" terms in Hfil(xf + xf’). For arbitrary term h(xy, ..., xy), without lose
of generality, we may assume that

N
| [u@lf@ - s f@] < ENYol fllnp o
=1

_ L4 a..b b a a b b a a
h(xy, oo XN) = X] o XXy XXy Xy Xy Xy Xy (3.20)

Substituting x; in (3.20), we obtain
Hﬁj:l(l — |z, 1P {'j:m(l — |z, 1P’ I"[Z:jﬂ(l — |z, P
[T} (1 = w2 T ey (1= w202 TTE oy (1 = D, e
71 (U= Lz T 2 (1 =l )
X J J
| IO RS LY § RTC R DT
Then by Theorem 2.12 in [28] we obtain
[T, (1 = w2
pv TI% 11— Wizl

From this and (3.19), the desired result follows. This completes the proof. O

h(xy,...,xN)

h(xy,...,xy)dA(w) < 1.

4. Conclusions

In this paper, a interesting result in the polydisk about the atomic decomposition of Bloch-type
space has been obtained. It is well known that the existing similar results in the unit ball have been
applied many times to the atomic decompositions of Bloch-type and weighted Bergman spaces. Hope
that this study can attract people’s more attention for the atomic decomposition of Bloch-type space.
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