Multiple attribute decision-making concerns with production significant in our everyday life. To resolve the problems that decision makers might feel uncertain to choose the suitable assessment values among several conceivable ideals in the procedure. Fuzzy model, and its extensions are extensively applied to MADM problems. In this study, we proposed an innovative Schweizer-Sklar t-norm and t-conorm operation of FFNs, Fermatean fuzzy Schweizer-Sklar operators. They were used as a framework for the development of an MCDM method, which was illustrated by an example to demonstrate its effectiveness and applicability. Finally, a complete limitation study, rational examination, and comparative analysis of the presented approaches has been exhibited, we originate that our technique is superior in offering DMs a better decision-making choice and reducing the restrictions on stating individual partialities.
Citation: Aliya Fahmi, Fazli Amin, Sayed M Eldin, Meshal Shutaywi, Wejdan Deebani, Saleh Al Sulaie. Multiple attribute decision-making based on Fermatean fuzzy number[J]. AIMS Mathematics, 2023, 8(5): 10835-10863. doi: 10.3934/math.2023550
Multiple attribute decision-making concerns with production significant in our everyday life. To resolve the problems that decision makers might feel uncertain to choose the suitable assessment values among several conceivable ideals in the procedure. Fuzzy model, and its extensions are extensively applied to MADM problems. In this study, we proposed an innovative Schweizer-Sklar t-norm and t-conorm operation of FFNs, Fermatean fuzzy Schweizer-Sklar operators. They were used as a framework for the development of an MCDM method, which was illustrated by an example to demonstrate its effectiveness and applicability. Finally, a complete limitation study, rational examination, and comparative analysis of the presented approaches has been exhibited, we originate that our technique is superior in offering DMs a better decision-making choice and reducing the restrictions on stating individual partialities.
[1] | K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4 |
[2] | M. Colak, I. Kaya, B. Özkan, A. Budak, A. Karaşan, A multi-criteria evaluation model based on hesitant fuzzy sets for blockchain technology in supply chain management, J. Intell. Fuzzy Syst., 38 (2020), 935–946. https://doi.org/10.3233/JIFS-179460 doi: 10.3233/JIFS-179460 |
[3] | S. Farshidi, S. Jansen, S. Espana, J. Verkleij, Decision support for blockchain platform selection: Three industry case studies, IEEE Trans. Eng. Manag., 67 (2020), 1109–1128. https://doi.org/10.1109/TEM.2019.2956897 doi: 10.1109/TEM.2019.2956897 |
[4] | A. Karaşan, I. Kaya, M. Erdoğan, M. Çolakc, A multicriteria decision making methodology based on two-dimensional uncertainty by hesitant z-fuzzy linguistic terms with an application for blockchain risk evaluation, Appl. Soft Comput., 113 (2021), 108014. https://doi.org/10.1016/j.asoc.2021.108014 |
[5] | Y. P. Lin, J. R. Petway, J. Anthony, H. Mukhtar, S. W. Liao, C. F. Chou, et al., Blockchain: The evolutionary next step for ICT E-agriculture, Environments, 4 (2017), 50. https://doi.org/10.3390/environments4030050 |
[6] | B. Ozkan, I. Kaya, M. Erdoğan, A. Karaşan, Evaluating blockchain risks by using a MCDM methodology based on Pythagorean fuzzy sets, In international conference on intelligent and fuzzy systems (ICIFS), 2019,935–943. https://doi.org/10.1007/978-3-030-23756-1_111 |
[7] | H. Tang, Y. Shi, P. Dong, Public blockchain evaluation using entropy and TOPSIS, Expert. Syst. Appl., 117 (2018), 204–210. https://doi.org/10.1016/j.eswa.2018.09.048 doi: 10.1016/j.eswa.2018.09.048 |
[8] | R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005 |
[9] | I. Yaqoob, K. Salah, R. Jayaraman, Y. Al-Hammadi, Blockchain for healthcare data management: Opportunities, challenges, and future recommendations, Neural Comput. Appl., 34 (2022), 11475–11490. https://doi.org/10.1007/s00521-020-05519-w |
[10] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[11] | Z. Zhang, H. Ning, F. Shi, F. Farha, Y. Xu, J. Xu, et al., Artificial intelligence in cyber security: Research advances, challenges, and opportunities, Artif. Intell. Rev., 55 (2022), 1029–1053. https://doi.org/10.1007/s10462-021-09976-0 |
[12] | F. Zhou, T. Y. Chen, An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems, Neural Comput. Appl., 33 (2021), 11821–11844. https://doi.org/10.1007/s00521-021-05829-7 |
[13] | T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intel. Hum. Comp., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 |
[14] | T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging geometric operators and its application in multi-criteria decision-making methods, Eng. Appl. Artif. Intell., 85 (2019), 112–121. https://doi.org/10.1016/j.engappai.2019.05.012 |
[15] | T. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making, Informatica, 30 (2019), 391–412. https://doi.org/10.15388/Informatica.2019.211 doi: 10.15388/Informatica.2019.211 |
[16] | C. M. Own, Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: An application in medical diagnosis, Appl. Intell., 31 (2009), 283. https://doi.org/10.1007/s10489-008-0126-y doi: 10.1007/s10489-008-0126-y |
[17] | K. Mondal, S. Pramanik, Intuitionistic fuzzy similarity measure based on tangent function and its application to multiattribute decision making, Glob. J. Adv. Res., 2 (2015), 464–471. |
[18] | J. Deng, J. Zhan, Z. Xu, E. Herrera-Viedma, Regret-Theoretic multiattribute decision-making model using three-way framework in multiscale information systems, IEEE T. Cybernetics, 2022, 1–14. https://doi:10.1109/TCYB.2022.3173374" target="_blank">10.1109/TCYB.2022.3173374">https://doi:10.1109/TCYB.2022.3173374. |
[19] | J. Wang, X. Ma, Z. Xu, J. Zhan, Regret theory-based three-way decision model in hesitant fuzzy environments and its application to medical decision, IEEE T. Fuzzy Syst., 30 (2022), 5361–5375. https://doi.org/10.1109/TFUZZ.2022.3176686 doi: 10.1109/TFUZZ.2022.3176686 |
[20] | J. Deng, J. Zhan, E. Herrera-Viedma, F. Herrera, Regret theory-based three-way decision method on incomplete multi-scale decision information systems with interval fuzzy numbers, IEEE T. Fuzzy Syst., 2022, 1–15. https://doi.org/10.1109/TFUZZ.2022.3193453 doi: 10.1109/TFUZZ.2022.3193453 |
[21] | J. Zhan, J. Wang, W. Ding, Y. Yao, Three-way behavioral decision making with hesitant fuzzy information systems: survey and challenges, IEEE-CAA J. Automatic., 10 (2023), 330–350. https://doi.org/10.1109/JAS.2022.106061 doi: 10.1109/JAS.2022.106061 |
[22] | T. Gai, M. Cao, F. Chiclana, Z. Zhang, Y. Dong, E. Herrera-Viedma, et al., Consensus-trust driven bidirectional feedback mechanism for improving consensus in social network large-group decision making, Group Decis. Negot., 17 (2022), 1–30. https://doi.org/10.1007/s10726-022-09798-7 |
[23] | F. Ji, Q. Cao, H. Li, H. Fujita, C. Liang, J. Wu, An online reviews-driven large-scale group decision making approach for evaluating user satisfaction of sharing accommodation, Expert Syst. Appl., 213 (2023), 118875. https://doi.org/10.1016/j.eswa.2022.118875 doi: 10.1016/j.eswa.2022.118875 |
[24] | J. Wu, S. Wang, F. Chiclana, E. Herrera-Viedma, Two-fold personalized feedback mechanism for social network consensus by uninorm interval trust propagation, IEEE T. Cybernetics, 52 (2021), 11081–11092. https://doi.org/10.1109/TCYB.2021.3076420 |
[25] | M. Akram, G. Ali, J. C. R. Alcantud, A. Riaz, Group decision-making with Fermatean fuzzy soft expert knowledge, Artif. Intell. Rev., 2022, 1–41. https://doi.org/10.1007/s10462-021-10119-8 |
[26] | M. Akram, U. Amjad, J. C. R. Alcantud, G. Santos-García, Complex Fermatean fuzzy N-soft sets: A new hybrid model with applications, J. Amb. Intell. Hum. Comput., 2022, 1–34. https://doi.org/10.1007/s12652-021-03629-4 |
[27] | M. Akram, S. M. U. Shah, M. M. A. Al-Shamiri, S. A. Edalatpanah, Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets, AIMS Math., 8 (2023), 924–961. https://doi.org/10.3934/math.2023045. |
[28] | M. Akram, G. Ali, M. A. Butt, J. C. Alcantud, Novel MCGDM analysis under m-polar fuzzy soft expert sets, Neural Comput. Appl., 33 (2021), 12051–12071. https://doi.org/10.1007/s00521-021-05850-w doi: 10.1007/s00521-021-05850-w |
[29] | J. C. Alcantud, G. Santos-García, M. Akram, OWA aggregation operators and multi-agent decisions with N-soft sets, Expert Syst. Appl., 203 (2022), 117430. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430 |
[30] | M. Akram, A. Khan, U. Ahmad, J. C. Alcantud, M. M. Al-Shamiri, A new group decision-making framework based on 2-tuple linguistic complex q-rung picture fuzzy sets, Math. Biosci. Eng., 19 (2022), 11281–11323. https://doi.org/10.3934/mbe.2022526 |
[31] | M. Akram, Z. Niaz, 2-Tuple linguistic Fermatean fuzzy decision-making method based on COCOSO with CRITIC for drip irrigation system analysis, J. Comput. Cogn. Eng., 2022. https://doi.org/10.47852/bonviewJCCE2202356 doi: 10.47852/bonviewJCCE2202356 |