For a connected network $ \Gamma $, the distance between any two vertices is the length of the shortest path between them. A vertex $ c $ in a connected network is said to resolve an edge $ e $ if the distances of $ c $ from its endpoints are unequal. The collection of all the vertices which resolve an edge is called the local resolving neighborhood set of this edge. A local resolving function is a real-valued function is defend as $ \eta : V(\Gamma) \rightarrow [0, 1] $ such that $ \eta (R_{x}(e)) \geq 1 $ for each edge $ e \in E(\Gamma) $, where $ R_{x} (e) $ represents the local resolving neighborhood set of a connected network. Thus the local fractional metric dimension is defined as $ dim_{LF}(\Gamma) = \quad min \quad \{ |\eta|: \quad \eta \quad is \quad the \quad minimal \quad local \quad resolving \quad function \quad of \quad \Gamma\}, $ where $ |\eta| = \sum \limits _ {a \in R_{x}(e)}\eta(a) $. In this manuscript, we have established sharp bounds of the local fractional metric dimension of different types of modified prism networks and it is also proved that local fractional metric dimension remains bounded when the order of these networks approaches to infinity.
Citation: Ahmed Alamer, Hassan Zafar, Muhammad Javaid. Study of modified prism networks via fractional metric dimension[J]. AIMS Mathematics, 2023, 8(5): 10864-10886. doi: 10.3934/math.2023551
For a connected network $ \Gamma $, the distance between any two vertices is the length of the shortest path between them. A vertex $ c $ in a connected network is said to resolve an edge $ e $ if the distances of $ c $ from its endpoints are unequal. The collection of all the vertices which resolve an edge is called the local resolving neighborhood set of this edge. A local resolving function is a real-valued function is defend as $ \eta : V(\Gamma) \rightarrow [0, 1] $ such that $ \eta (R_{x}(e)) \geq 1 $ for each edge $ e \in E(\Gamma) $, where $ R_{x} (e) $ represents the local resolving neighborhood set of a connected network. Thus the local fractional metric dimension is defined as $ dim_{LF}(\Gamma) = \quad min \quad \{ |\eta|: \quad \eta \quad is \quad the \quad minimal \quad local \quad resolving \quad function \quad of \quad \Gamma\}, $ where $ |\eta| = \sum \limits _ {a \in R_{x}(e)}\eta(a) $. In this manuscript, we have established sharp bounds of the local fractional metric dimension of different types of modified prism networks and it is also proved that local fractional metric dimension remains bounded when the order of these networks approaches to infinity.
[1] | P. J. Slater, Leaves of trees, Congr. Numerantium, 14 (1975), 549–559. |
[2] | F. Harary, R. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
[3] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discret. Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 |
[4] | B. Shanmukha, B. Sooryanarayana, K. S. Harinath, Metric Dimension of wheels, Far East J. Appl. Math., 8 (2002), 217–229. |
[5] | G. Chartrand, L. Eroh, M. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discret. Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0 |
[6] | Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, et al., Network discovery and verification, In: Graph-Theoretic Concepts in Computer Science, Berlin, Heidelberg: Springer, 2005. https://doi.org/10.1007/11604686_12 |
[7] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discret. Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 |
[8] | V. Chvátal, Mastermind, Combinatorica, 3 (1983), 325–329. https://doi.org/10.1007/BF02579188 |
[9] | A. Sebő, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. https://doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070 |
[10] | S. Söderberg, H. S. Shapiro, A combinatory detection problem, Am. Math. Mon., 70 (2018), 1066–1070. https://doi.org/10.1080/00029890.1963.11992174 doi: 10.1080/00029890.1963.11992174 |
[11] | S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in Graphs, College Park: University of Maryland, 1994. |
[12] | R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vis. Graph. Image Process., 25 (1984), 113–121. https://doi.org/10.1016/0734-189X(84)90051-3 doi: 10.1016/0734-189X(84)90051-3 |
[13] | F. Okamoto, B. Phinezy, P. Zhang, The local metric dimension of a graph, Math. Bohem., 135 (2010), 239–255. |
[14] | I. G. Yero, A. Estrada-Moreno, J. A. Rodriguez-Velazquez, Computing the k-metric dimension of graphs, Appl. Math. Comput., 300 (2017), 60–69. https://doi.org/10.1016/j.amc.2016.12.005 doi: 10.1016/j.amc.2016.12.005 |
[15] | A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discret. Appl. Math., 251 (2018), 204–220. https://doi.org/10.1016/j.dam.2018.05.052 doi: 10.1016/j.dam.2018.05.052 |
[16] | C. Hernando, M. Mora, P. J. Slater, D. R. Wood, Fault-Tolerant metric dimension of graphs, Lect. Notes Series, 5 (2006), 81–85. |
[17] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010 |
[18] | J. Currie, O. R. Oellermann, The metric dimension and metric independence of a graph, J. Combin. Math. Combin. Comput., 39 (2001), 157–167. |
[19] | S. Arumugam, V. Mathew, The fractional metric dimension of graphs, Discrete Math., 312 (2012), 1584–1590. https://doi.org/10.1016/j.disc.2011.05.039 doi: 10.1016/j.disc.2011.05.039 |
[20] | S. Arumugam, V. Mathew, The fractional metric dimension of graphs, Discrete Math., 5 (2013), 1–8. |
[21] | M. Feng, B. Lv, K. Wang, On the fractional metric dimension of graphs, Discret. Appl. Math., 170 (2014), 55–63. https://doi.org/10.1016/j.dam.2014.01.006 doi: 10.1016/j.dam.2014.01.006 |
[22] | M. Javaid, M. K. Aslam, A. M. Alanazi, M. Aljohani, Characterization of (Molecular) graphs with fractional metric dimension as unity, J. Chem., 2021 (2021), 9910572. https://doi.org/10.1155/2021/9910572 doi: 10.1155/2021/9910572 |
[23] | A. H. Alkhaldi, M. K. Aslam, M. Javaid, A. M. Alanazi, Bounds of fractional metric dimension and applications with grid-related networks, Mathematics, 9 (2021), 1383. https://doi.org/ 10.3390/math9121383 doi: 10.3390/math9121383 |
[24] | H. Zafar, M. Javaid, E. Bonyah, Studies of connected networks via fractional metric dimension, J. Math., 2022 (2022), 1273358. https://doi.org/10.1155/2022/1273358 doi: 10.1155/2022/1273358 |
[25] | S. Aisyah, M. I. Utoyo, L. Susilowati, On the local fractional metric dimension of corona product graphs, IOP Conf. Earth Environ. Sci., 243 (2019), 012043. https://doi.org/10.1088/1755-1315/243/1/012043 doi: 10.1088/1755-1315/243/1/012043 |
[26] | M. Javaid, M. Raza, P. Kumam, J. B. Liu, Sharp bounds of local fractional metric dimesion of connected networks, IEEE Access, 8 (2020), 172329–172342. https://doi.org/10.1109/ACCESS.2020.3025018 doi: 10.1109/ACCESS.2020.3025018 |
[27] | M. Javaid, H. Zafar, Q. Zhu, A. M. Alanazi, Improved lower bound of LFMD with applications of prism-related networks, Math. Probl. Eng., 2021 (2021), 9950310. https://doi.org/10.1155/2021/9950310 doi: 10.1155/2021/9950310 |
[28] | H. Zafar, M. Javaid, E. Bonyah, Computing LF-Metric dimension of generalized gear networks, Math. Probl. Eng., 2021 (2021), 4260975. https://doi.org/10.1155/2021/4260975 doi: 10.1155/2021/4260975 |
[29] | M. Javaid, H. Zafar, E. Bonyah, Fractional metric dimension of generalized sunlet networks, J. Math., 2021 (2021), 4101869. https://doi.org/10.1155/2021/4101869 doi: 10.1155/2021/4101869 |
[30] | J. B. Liu, M. K. Aslam, M. Javaid, Local fractional metric dimensions of rotationally symmetric and planar networks, IEEE Access, 8 (2020), 82404–82420. https://doi.org/10.1109/ACCESS.2020.2991685 doi: 10.1109/ACCESS.2020.2991685 |