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Abstract: For a connected network Γ, the distance between any two vertices is the length of the
shortest path between them. A vertex c in a connected network is said to resolve an edge e if the
distances of c from its endpoints are unequal. The collection of all the vertices which resolve an edge
is called the local resolving neighborhood set of this edge. A local resolving function is a real-valued
function is defend as η : V(Γ) → [0, 1] such that η(Rx(e)) ≥ 1 for each edge e ∈ E(Γ), where Rx(e)
represents the local resolving neighborhood set of a connected network. Thus the local fractional
metric dimension is defined as dimLF(Γ) = min {|η| : η is the minimal local resolving f unction o f Γ},

where |η| =
∑

a∈Rx(e)
η(a). In this manuscript, we have established sharp bounds of the local fractional

metric dimension of different types of modified prism networks and it is also proved that local fractional
metric dimension remains bounded when the order of these networks approaches to infinity.
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1. Introduction

The notion of resolving sets in general networks is introduced by Slater in 1975 and he called the
minimum cardinality of a resolving set location number [1]. In next year Harary and Melter also
introduced the same concept with different name and they called it the metric dimension (MD) of the
connected networks. They provide a characterization of MD of the trees and they also proved that the
MD of wheel W1,z and complete network Kz is 2 and z − 1 respectively [2]. Later on the results of the
MD of W1,z, were improved by S. Khuller et al. and they also characterized the connected networks
that those have MD 1 and 2 [3]. Shanmukha et al. improved the results of Harary and Melter and they
computed the MD of wheel-related networks [4]. Chartrand et al. established the bounds on MD of
connected networks in terms of the order and diameter of a network [5].
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The concept of MD arises in diverse areas including network discovery and verification [6], robot
navigation [7], strategies for the Mastermind game [8], combinatorial optimization [9], coin
weighting [10], navigation of robots in networks [11] and image processing [12]. There are some new
types of MD are discovered in recent times as local MD [13], k- MD [14], edge MD [15], fault tolrent
MD [16] and some interesting results of fault-tolerant MD of convex polytope networks have been
derived by Raza et al [17].

The idea of MD to find the solution of specific integer programming (IPP) is introduced by
Chartrand et al. [5] and Currie and Ollermann introduced the concept of fractional metric dimension
(FMD) to find improved solution of IPP [18]. The concept of FMD in the field of networking theory
is formally introduced by Arumugam and Mathew, they developed different combinatorial techniques
to find the exact value of FMD of different connected networks. Moreover, they also found the FMD
of Petersen, cycle, friendship and cartesian product of different connected networks [19, 20]. Feng
et al. established a computational technique to find FMD of vertex transitive networks and as an
application they computed the FMD of hamming and generalized Johnson networks [21]. Javaid et al.
characterize all those connected networks that attain FMD exactly 1 [22, 23] and Zafar et al.
computed the exact value of FMD of different connected networks [24].

The notion of latest derived form of FMD known as a local fractional metric dimension (LFMD) is
defined by Asiyah et al. and they calculated the exact values of the LFMD of the corona product of
connected networks [25]. Javaid et al. purposed a unique methodology to compute the sharp bounds
of LFMD for all the connected networks and they also proved that the lower bound of LFMD of non-
bipartite networks is greater than 1 [26, 27]. Some interesting results of LFMD of different connected
networks can be seen in [28–30].

In this paper, the lower and upper bounds of LFMD of generalized modified prism networks have
been computed. It is also proved that all the upper bounds of all these networks is less or equal to 2,
when the order of these networks approaches to ∞. The rest of the paper is organized as follows:
Section 2 deals with preliminaries, Section 3 consists of the main results of LFMD of generalized
modified prism network, Section 4 represents the conclusion and comparison among all the main
results.

2. Preliminaries

A network Γ is a pair (V(Γ) × E(Γ)) with V(Γ) is a vertex set and E(Γ) ⊆ (V(Γ) × V(Γ)) an edge
set. A walk is a sequence of edges and vertices of a network. A path is a sequence of vertices with
the property that each vertex in the sequence is adjacent to the vertex next to it. For any two vertices
x , y of V(Γ) then the distance d(x, y) between them is the number of edges between the shortest path
connecting them. A network is called connected if there exist a path between every pair of vertices of
Γ. A vertex x ∈ V(Γ) resolves a pair (a, b) if d(x, a) , d(x, b). Let R = {r1, r2, r3, ...., rz} ⊂ V(Γ) be a
ordered set is considered as resolving set of Γ if each pair of vertices of Γ is resolved by some vertex
in R. A resolving set with minimum cardinality is called the metric dimension of Γ and it is defined as

dim(Γ) = min { |R| : R is resolving set o f Γ}.

For an edge ab ∈ E(Γ) the local resolving neighbourhood set (RLN) Rx(ab) of ab is defined as Rx(ab) =

{c ∈ V(Γ) : d(a, c) , d(b, c)}. A local resolving function (LRF) is defined as η : V(Γ) → [0, 1] such
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that η(Rx(ab)) ≥ 1 for each Rx(ab) of Γ. A local resolving function η is called minimal if there exists a
function µ : V(Γ) → [0, 1] such that µ ≤ η and µ(a) , η(a) for at least one a ∈ Γ(V) that is not a local
resolving function of Γ. If |η| =

∑
a∈Rx(ab)

η(a) then LFMD of Γ is donated by dimLF(Γ) is defined as

dimLF(Γ) = min { |η| : η is minimal local resolving f unction o f Γ}.

Throughout the paper, we have used the symbol of local resolving neighbourhood set of an edge ab ∈
E(Γ) is Rx(ab). For more details about local resolving neighbourhood set and local resolving function,
we refer [25].
Lemma X. [26] Let Γ = (V(Γ) × E(Γ)) be a connected network. If |Rx(e) ∩ A| ≥ ω, ∀e ∈ E(Γ) then

1 ≤ diml f (Γ) ≤ |V(Γ)|
ω

where ω = min{|Rx(e)| : e ∈ E(Γ)}, where A = ∪{Rx(e) : |Rx(e) = ω}.

Lemma Y. [27] Let Γ = (V(Γ) × E(Γ)) be a connected network. Then

diml f (Γ) ≥ |V(Γ)|
σ

where σ = max{|Rx(e)| : e ∈ E(Γ)}.

2.1. Modified prism networks

For z ≥ 5 the modified prism network MPz,1,2 with vertex set vertex set V(MPz,1,2) = {a j, a′j : 1 ≤
j ≤ z} and edge set E(MPz,1,2) = {a ja j+2 : 1 ≤ j ≤ z − 2} ∪ {a′ja

′
j+1 : 1 ≤ j ≤ z} ∪ {a ja′j : 1 ≤

j ≤ z} ∪ {a ja j+1 : 1 ≤ j ≤ z}, where |V(MPz,1,2)| = 2z and |E(MPz,1,2)| = 4z. Fore more details see
Figure 1.

Figure 1. Modified prism networkMP9,1,2.

For z ≥ 5 the modified prism network MQz,1,2 with vertex set vertex set V(MPz,1,2) = {a j, a′j : 1 ≤
j ≤ z} and edge set E(MPz,1,2) = {a ja j+2 : 1 ≤ j ≤ z − 2} ∪ {a′ja

′
j+1 : 1 ≤ j ≤ z} ∪ {a ja′j : 1 ≤ j ≤

z} ∪ {a ja j+1 : 1 ≤ j ≤ z} ∪ {a′jb j : 1 ≤ j ≤ z} ∪ {a ja j+1 : 1 ≤ j ≤ z} ∪ {b jb j+1 : 1 ≤ j ≤ z},
where |V(MPz,1,2)| = 3z and |E(MPz,1,2)| = 6z. Fore more details see Figure 2.
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Figure 2. Modified prism networkMQ9,1,2.

3. Main results

In this dissertation, our objective is to compute RLN Sets and LFMD of modified prism networks
(MPz,1,2,MQz,1,2) in the form of sharp upper and lower bounds.

4. RLN sets and LFMD of modified prism networkMPz,1,2

In this section, we compute the RLN sets and LFMD of modified prism network (MPz,1,2).

Lemma 4.1. LetMPz,1,2 be a modified prism network , where z � 1 (mod 4) . Then

(a) |Rx(a ja j+1)| = z − 1 and
z⋃

j=1
Rx(a ja j+1) = V(MPz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
z⋃

j=1
Rx(a ja j+1) ∩ Rx(y)| > |Rx(a ja j+1)| where |Rx(y)| are the other possible

resolving local neighbourhood sets.

Proof. Let a j inner, a′j be the outer vertices of modified generalized Prism network, for 1 ≤ j ≤ z,
where z + 1 � (1 mod z), we have following possibilities
(a) Rx(a ja j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6....., az+i−5, az+i−3, az+i−1} ∪

{a′j+2, a
′
j+4, a

′
j+6, ....., a

′
z+i−5, a

′
z+i−3, a

′
z+i−1} ∪ {a z+2i+2

2
} ∪ {a′z+2i+2

2
} and |Rx(a ja j+1)| = z − 1 and

|
z⋃

j=1
Rx(a ja j+1)| = 3z = |V(MPz,1,2)|.

(b) Rx(a ja′j) = V(MPz,1,2) − {a′j+2, a
′
j+3, a

′
z+ j−3, az+ j−4}, Rx(a ja j+2) = V(MPz,1,2) − {a j+1, a′j+1},

Rx(a′ja
′
j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6, ...., az+ j−3, a′i+4, a

′
i+6, a

′
i+8, a

′
i+10, ..., a

′
z+i−5}. �

The cardinalities among all these RLN sets are classified in Table 1.

Table 1. Cardinality of each RLN set.

RLN Set Cardinality
Rx(a ja′j) 2z − 4 > z − 1
Rx(a ja j+2) 2z − 2 > z − 1
Rx(a′ja

′
j+1) z + 3 > z − 1
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It is clear from above Table 1 that cardinality of Rx(a ja j+1) is less then all other RLN sets.

Theorem 4.2. LetMPz,1,2 be a modified prism network , where z � 1 (mod 4). Then

z
z − 1

≤ dimLF(MPz,1,2) ≤
2z

z − 1
.

Proof. Case 1. For z = 5 , we have the following RLN sets
Rx(a1a2) = Rx(a′1a′2) = {a1, a2, a′1, a

′
2},

Rx(a2a3) = Rx(a′2a′3) = {a2, a3, a′2, a
′
3},

Rx(a3a4) = Rx(a′3a′4) = {a3, a4, a′3, a
′
4},

Rx(a4a5) = Rx(a′4a′5) = {a4, a5, a′4, a
′
5},

Rx(a5a1) = Rx(a′5a′1) = {a1, a5, a′1, a
′
5},

Rx(a1a3) = {a1, a3, a′1, a
′
3},

Rx(a1a4) = {a1, a4, a′1, a
′
4},

Rx(a2a4) = {a2, a4, a′2, a
′
4},

Rx(a2a5) = {a2, a5, a′2, a
′
5},

Rx(a3a5) = {a3, a5, a′3, a
′
5},

Rx(a1a′1) = V(MP5,1,2) − {a′3, a
′
4},

Rx(a2a′2) = V(MP5,1,2) − {a′4, a
′
5},

Rx(a3a′3) = V(MP5,1,2) − {a′5, a
′
1},

Rx(a4a′4) = V(MP5,1,2) − {a′1, a
′
2},

Rx(a5a′5) = V(MP5,1,2) − {a′2, a
′
3}.

For 1 ≤ j ≤ 5 it is clear that |Rx(a ja j+1)| = 8 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the
other RLN sets of MP5,1,2. Therefore, an upper LRF η : V(MP5,1,2) → [0, 1] is defined as η(y) = 1

4
for each y ∈ V(MP5,1,2). In order to show that η is a minimal LRF, we define another LRF η(y)′ :
V(MP5,1,2) → [0, 1] as |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not a LRF of MP5,1,2 .

Therefore, dimLF(MP5,1,2) ≤
10∑
1

1
4 = 5

2 . In the same context, for 1 ≤ j ≤ z it is clear from the above

RLN sets that |Rx(a ja′j)| = 8 and |Rx(a ja′j)| ≥ |Rx(e)|,where Rx(e) are the other RLN sets of MP5,1,2.
Therefore, a lower LRF η : V(MP5,1,2) → [0, 1] is defined as η(y) = 1

21 for all y ∈ V(MP5,1,2) hence

dimLF(MP5,1,2) ≥
10∑
1

1
8 = 5

4 . Consequently,

5
4 ≤ dimLF(MP5,1,2) ≤ 5

2 .

Case 2. For 1 ≤ j ≤ z from Lemma 4.1 it is clear that |Rx(a ja j+1)| = z + 1 and |Rx(a ja j+1)| ≤ |Rx(e)|,
where Rx(e) are the other RLN sets of MPz,1,2. Therefore, an upper LRF η : V(MPz,1,2) → [0, 1] is
defined as η(y) = 1

z−1 for each y ∈ V(MPz,1,2). In order to show that η is a minimal RLF, we define
another RLF η′ : V(MPz,1,2) → [0, 1] as |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is

not a RLF of (MPz,1,2). Therefore, by Lemma X dimLF(MPz,1,2) ≤
2z∑
j=1

1
z−1 = 2z

z−1 . In the same way,

for 1 ≤ j ≤ z it is clear from Lemma 4.1 |Rx(a ja j+1)| = 2z − 2 and |Rx(a ja j+2)| ≥ |Rx(e)|,where
Rx(e) are the other LRN sets of MPz,1,2. Therefore, a lower RLF η : V(MPz,1,2) → [0, 1] is defined as

η(y) = 1
2z−4 for each y ∈ V(MPz,1,2) hence by Lemma Y dimLF(MPz,1,2) ≥

2z∑
j=1

1
2z−2 = z

z−2 . Consequently,
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z
z − 2

≤ dimLF(MPz,1,2) ≤
2z

z − 1
.

�

Lemma 4.3. LetMPz,1,2 be a modified prism network, where z � 3 (mod 4) . Then

(a) |Rx(a ja j+1)| = z + 1 and
z⋃

j=1
Rx(a ja j+1) = V(MPz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
z⋃

j=1
Rx(a ja j+1) ∩ Rx(y)| > |Rx(a ja j+1)| where |Rx(e)| are the other possible

RLN sets.

Proof. Let a j inner, a′j be the outer vertices of modified prism network, for 1 ≤ j ≤ z , where
z + 1 � 1( mod z), we have following possibilities,
(a)Rx(a ja j+1)= V(MPz,1,2)− {a j+2, a j+4, a j+6, ....., az+i−5, az+i−3, az} ∪ {a′j+2, a

′
j+4, a

′
j+6, ....., a

′
z+i−5, a

′
z+i−3, a

′
z}

and |Rx(a ja j+1)| = z + 1 and |
z⋃

j=1
Rx(a ja j+1)| = 3z = |V(MPz,1,2)|.

(b) Rx(a ja′j) = V(MPz,1,2)−{a′j+2, a
′
j+3, a

′
z+ j−3, az+ j−4}, Rx(a ja j+2) = V(MPz,1,2)−{a j+1, a′j+1}, Rx(a′ja

′
j+1) =

V(MPz,1,2) − {a j+2, a j+4, a j+6, ...., az+ j−3, a′i+4, a
′
i+6, a

′
i+8, a

′
i+10, ..., a

′
z+i−5}. �

The RLN sets are classified in Table 2 and it is clear that |Rx(a ja j+1)| is less then the all other RLN
sets ofMPz,1,2.

Table 2. Cardinality of each RLN set.

RLN Set Cardinality
Rx(a ja′j) 2z − 4 > z + 1
Rx(a ja j+2) 2z − 2 > z + 1
Rx(a′ja

′
j+1) z + 3 > z + 1

Theorem 4.4. LetMPz,1,2 be a modified prism network, where z � 3 (mod 4). Then

z
z − 1

≤ dimLF(MPz,1,2) ≤
2z

z + 1
.

Proof. Case 1. For z = 7 , we have the following RLN sets
Rx(a1a2) = V(MP7,1,2) − {a3, a5, a7, a′3, a

′
5, a

′
7},

Rx(a2a3) = V(MP7,1,2) − {a4, a6, a1, a′4, a
′
6, a

′
1},

Rx(a3a4) = V(MP7,1,2) − {a5, a7, a2, a′5, a
′
7, a

′
2},

Rx(a4a5) = V(MP7,1,2) − {a6, a1, a3, a′6, a
′
1, a

′
3},

Rx(a5a6) = V(MP7,1,2) − {a7, a2, a4, a′7, a
′
2, a

′
4},

Rx(a6a7) = V(MP7,1,2) − {a1, a3, a5, a′1, a
′
3, a

′
5},

Rx(a7a1) = V(MP7,1,2) − {a2, a4, a6, a′2, a
′
4, a

′
6},

Rx(a1a′1) = V(MP7,1,2) − {a′3, a
′
4, a

′
5, a

′
6},

Rx(a2a′2) = V(MP7,1,2) − {a′4, a
′
5, a

′
6, a

′
7},
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Rx(a3a′3) = V(MP7,1,2) − {a′5, a
′
6, a

′
7, a

′
1},

Rx(a4a′4) = V(MP7,1,2) − {a′6, a
′
7, a

′
1, a

′
2},

Rx(a5a′5) = V(MP7,1,2) − {a′7, a
′
1, a

′
2, a

′
3},

Rx(a6a′6) = V(MP7,1,2) − {a′1, a
′
2, a

′
3, a

′
4},

Rx(a7a′7) = V(MP7,1,2) − {a′2, a
′
3, a

′
4, a

′
5, },

Rx(a1a3) = V(MP7,1,2) − {a2, a′2},
Rx(a2a4) = V(MP7,1,2) − {a3, a′3},
Rx(a3a5) = V(MP7,1,2) − {a4, a′4},
Rx(a4a6) = V(MP7,1,2) − {a5, a′5},
Rx(a5a7) = V(MP7,1,2) − {a6, a′6},
Rx(a6a1) = V(MP7,1,2) − {a7, a′7},
Rx(a7a2) = V(MP7,1,2) − {a1, a′1},
Rx(a′1a′2) = V(MP7,1,2) − {a3, a5, a7, a′5},
Rx(a′2a′3) = V(MP7,1,2) − {a4, a6, a1, a′6},
Rx(a′3a′4) = V(MP7,1,2) − {a5, a7, a2, a′7},
Rx(a′4a′5) = V(MP7,1,2) − {a6, a1, a3, a′1},
Rx(a′5a′6) = V(MP7,1,2) − {a7, a2, a4, a′2},
Rx(a′6a′7) = V(MP7,1,2) − {a1, a3, a5, a′3},
Rx(a′7a′1) = V(MP7,1,2) − {a2, a4, a6, a′4}.

For 1 ≤ j ≤ 7 it is clear that |Rx(a ja j+1)| = 8 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the
other RLN sets of MP7,1,2). Therefore, an upper LRF η : V(MP7,1,2) → [0, 1] is defined as η(y) = 1

8
for each y ∈ V(MP7,1,2). In order to show that η(y) is a minimal upper LRF, we define another LRF
η(y)′ : V(MP7,1,2)→ [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not a local

resolving function of P7,1,2). Therefore, dimLF(MP7,1,2) ≤
14∑
1

1
8 = 7

4 . In the same context, for 1 ≤ j ≤ z

it is clear from the above RLN sets that |Rx(a ja j+2)| = 12 and |Rx(a ja j+2)| ≥ |Rx(e)|,where Rx(e) are the
other RLN sets ofMP7,1,2). Therefore, a lower LRF η : V(MP7,1,2) → [0, 1] is defined as η(y) = 1

21 for

each y ∈ V(MP7,1,2) hence dimLF(MP7,1,2) ≥
14∑
1

1
12 = 7

6 . Since MP7,1,2 is a non-bipartite network so its

lower bound must be greater then 1. Consequently,

7
6 ≤ dimLF(MP7,1,2) ≤ 7

4 .

Case 2. For 1 ≤ j ≤ z from Lemma 4.3, it is clear that |Rx(a ja j+1)| = z + 1 and |Rx(a ja j+1)| ≤ |Rx(e)|,
where Rx(e) are the other RLN sets of MPz,1,2. Therefore, an upper LRF η : V(MPz,1,2) → [0, 1] is
defined as η(y) = 2

3n+6 for each y ∈ V(MPz,1,2). In order to show that η is a minimal LRF, we define
another LRF η′ : V(MPz,1,2) → [0, 1] as |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not

a LRF of MP7,1,2 hence by Lemma X dimLF ≤
2z∑
j=1

1
z+1 = 2z

z+1 . In the same way, for 1 ≤ j ≤ z it is

clear from Lemma 4.3 |Rx(a ja j+1)| = 2z − 2 and |Rx(a ja j+2)| ≥ |Rx(e)|, where Rx(e) are the other RLN
of MPz,1,2. Therefore, a maximal lower LRF η : V(MPz,1,2) → [0, 1] is defined as η(y) = 1

2z−2 for each

y ∈ V(MPz,1,2) hence by Lemma Y dimLF(MPz,1,2) ≥
2z∑
j=1

1
2z−2 = z

z−1 . Consequently,

z
z−1 ≤ dimLF(MPz,1,2) ≤ 2z

z+1 .
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Lemma 4.5. LetMPz,1,2 be a modified generalized prism network, where z � 0 (mod 4) . Then

(a) |Rx(a ja j+1)| = z and
z⋃

j=1
Rx(a ja j+1) = V(MPz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
z⋃

j=1
Rx(a ja j+1)∩Rx(y)| > |Rx(a ja j+1)|, where |Rx(y)| are the other possible

RLN sets.

Proof. Let a j inner, a′j be the outer vertices of modified generalized Prism network, for 1 ≤ j ≤ z ,
where z + 1 � (1 mod z), we have following possibilities
(a) Rx(a ja j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6....., a z+2 j

2
, a z+2 j+2

2
, a z+2 j+6

2
, a z+2 j+10

2
, .....az+i−5, az+i−3, az+i−1} ∪

{a′j+2, a
′
j+4, a

′
j+6....., a

′
z+2 j

2

, a′z+2 j+2
2

, a′z+2 j+6
2

, a′z+2 j+10
2

, .....a′z+i−5, a
′
z+i−3, a

′
z+i−1} and |Rx(a ja j+1)| = z and

|
z⋃

j=1
Rx(a ja j+1)| = 2z = |V(MPz,1,2)|.

(b)Rx(a ja′j) =V(MPz,1,2)− {a′j+2, a
′
j+3, a

′
z+ j−2, az+ j−3}, Rx(a ja j+2) = V(MPz,1,2)− {a j+1, a′j+1, a n+2 j+2

2
, a′n+2 j+2

2

},

Rx(a′ja
′
j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6, ...., a z+2 j

2
, a z+2 j+2

2
, a z+2 j+6

2
, ...., az+ j−6, az+ j−3, az+ j−1}. �

The RLN sets are classified in Table 3 and it is clear that cardinality of Rx(a ja j+1) is less then all
other RLN sets ofMPz,1,2.

Table 3. Cardinality of each LRN set.

RLN Set Cardinality
Rx(a ja′j) 2z − 4 > z
Rx(a ja j+2) 2z − 2 > z
Rx(a′ja

′
j+1) z + 3 > z

Theorem 4.6. LetMPz,1,2 be a modified prism network , where z � 0 (mod 4). Then

z
z − 2

≤ dimLF(MPz,1,2) ≤ 2.

Proof. Case 1. For z = 8 , we have the following RLN sets;
Rx(a1a2) = V(MP8,1,2) − {a3, a5, a6, a8, a′3, a

′
5, a

′
6, a

′
8},

Rx(a2a3) = V(MP8,1,2) − {a4, a6, a1, a2, a′4, a
′
6, a

′
7, a

′
1},

Rx(a3a4) = V(MP8,1,2) − {a5, a7, a8, a3, a′5, a
′
7, a

′
8, a

′
2},

Rx(a4a5) = V(MP8,1,2) − {a6, a8, a1, a4, a′6, a
′
8, a

′
1, a

′
3},

Rx(a5a6) = V(MP8,1,2) − {a7, a1, a2, a5, a′7, a
′
1, a

′
2, a

′
4},

Rx(a6a7) = V(MP8,1,2) − {a8, a2, a3, a6, a′8, a
′
2, a

′
3, a

′
5},

Rx(a7a8) = V(MP8,1,2) − {a1, a3, a4, a7, a′1, a
′
3, a

′
4, a

′
6},

Rx(a1a8) = V(MP8,1,2) − {a2, a4, a5, a8, a′2, a
′
4, a

′
5, a

′
7},

Rx(a1a′1) = V(MP8,1,2) − {a′3, a
′
4, a

′
6, a

′
7},

Rx(a2a′2) = V(MP8,1,2) − {a′4, a
′
5, a

′
7, a

′
8},

Rx(a3a′3) = V(MP8,1,2) − {a′5, a
′
6, a

′
8, a

′
1},
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Rx(a4a′4) = V(MP8,1,2) − {a′6, a
′
7, a

′
1, a

′
2},

Rx(a5a′5) = V(MP8,1,2) − {a′7, a
′
8, a

′
2, a

′
3},

Rx(a6a′6) = V(MP8,1,2) − {a′8, a
′
1, a

′
3, a

′
4},

Rx(a7a′7) = V(MP8,1,2) − {a′1, a
′
2, a

′
4, a

′
5},

Rx(a8a′8) = V(MP8,1,2) − {a′2, a
′
3, a

′
5, a

′
6},

Rx(a′1a′2) = V(MP8,1,2) − {a3, a5, a6, a8},

Rx(a′2a′3) = V(MP8,1,2) − {a4, a6, a7, a1},

Rx(a′3a′4) = V(MP8,1,2) − {a5, a7, a8, a2},

Rx(a′4a′5) = V(MP8,1,2) − {a6, a8, a1, a3},

Rx(a′5a′6) = V(MP8,1,2) − {a7, a1, a2, a4},

Rx(a′6a′7) = V(MP8,1,2) − {a8, a2, a3, a5},

Rx(a′7a′8) = V(MP8,1,2) − {a1, a3, a4, a6},

Rx(a′8a′1) = V(MP8,1,2) − {a2, a4, a5, a7},

Rx(a1a3) = V(MP8,1,2) − {a2, a6, a′2, a
′
6},

Rx(a2a4) = V(MP8,1,2) − {a3, a7, a′3, a
′
7},

Rx(a3a5) = V(MP8,1,2) − {a4, a8, a′4, a
′
8},

Rx(a4a6) = V(MP8,1,2) − {a5, a1, a′5, a
′
1},

Rx(a5a7) = V(MP8,1,2) − {a6, a2, a′6, a
′
2},

Rx(a6a8) = V(MP8,1,2) − {a3, a7, a′3, a
′
7},

Rx(a7a1) = V(MP8,1,2) − {a8, a1, a′8, a
′
1},

Rx(a8a2) = V(MP8,1,2) − {a1, a5, a′1, a
′
5}.

For 1 ≤ j ≤ 8 it is clear that |Rx(a ja j+1)| = 8 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the
RLN sets of MP8,1,2. Then there exits an upper LRF η : V(MP8,1,2) → [0, 1] and it is defined as
η(y) = 1

8 for each y ∈ V(MP8,1,2). In order to show that η(y) is a minimal LRF, we define another LRF
η′(y) : V(MP8,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not a

LRF of MP8,1,2. Therefore, dimLF(MP8,1,2) ≤
16∑
1

1
8 = 2. In the same context, for 1 ≤ j ≤ z it is clear

from RLN sets that |Rx(a ja j+2)| = 12 and |Rx(a ja j+2)| ≥ |Rx(e)|,where Rx(e) are the other RLN sets of
MP8,1,2). Then there exist a lower LRF η : V(MP8,1,2) → [0, 1] and it is defined η(y) = 1

21 for each

y ∈ V(MP7,1,2) hence dimLF(MP8,1,2) ≥
16∑
1

1
12 = 4

3 . SinceMP8,1,2 is a non-bipartite network so its lower

bound must be greater then 1. Consequently,

4
3 ≤ dimLF(MP8,1,2) ≤ 2.

Case 2. For 1 ≤ j ≤ z, it is clear from Lemma 4.5 it is that |Rx(a ja j+1)| = z and |Rx(a ja j+1)| ≤ |Rx(e)|,
where Rx(e) are the other RLN sets of MPz,1,2. Then there exits an upper LRF η : V(MPz,1,2) → [0, 1]
an it is defined as η(y) = 1

z for each y ∈ V(MPz,1,2). In order to show that η is a minimal LRF, we define
another LRF η′ : V(MPz,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is

not a LRF ofMP8,1,2 hence by Lemma X dimLF(MPz,1,2) ≤
2z∑
j=1

1
z = 2. In the same way, For 1 ≤ j ≤ z

it is clear from Lemma 4.5 |Rx(a ja j+1)| = 2z − 4 and |Rx(a ja j+2)| ≥ |Rx(e)|,where Rx(e) are the other
RLN sets ofMPz,1,2). Then there exits a maximal lower LRF η : V(MPz,1,2)→ [0, 1] and it is defined as

η(y) = 1
z−1 for each y ∈ V(MPz,1,2) hence by Lemma Y dimLF(MPz,1,2) ≥

2z∑
j=1

1
2z−4 = z

z−2 . Consequently,
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z
z−2 ≤ dimLF(MPz,1,2) ≤ 2.

�

Lemma 4.7. LetMPz,1,2 be a modified prism network, where z � 2 (mod 4). Then

(a) |Rx(a ja j+1)| = z + 2 and
z⋃

j=1
Rx(a ja j+1) = V(MPz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
z⋃

j=1
Rx(a ja j+1) ∩ Rx(y)| > |Rx(a ja j+1)| where |Rx(y)| are the other possible

resolving local neighbourhood sets.

Proof. Let a j inner, a′j be the outer vertices of modified generalized Prism network, for 1 ≤ j ≤ z ,
where z + 1 � (1 mod z), we have following possibilities
(a) Rx(a ja j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6....., a z+ j−1

2
, a z+2 j+2

2
, a z+2 j+6

2
, a z+2 j+10

2
, .....az+i−5, az+i−3, az+i−1} ∪

{a′j+2, a
′
j+4, a

′
j+6....., a

′
z+ j−1

2

, a′z+2 j+2
2

, a′z+2 j+6
2

, a′z+2 j+10
2

, .....a′z+i−5, a
′
z+i−3, a

′
z+i−1} and |Rx(a ja j+1)| = z and

|
z⋃

j=1
Rx(a ja j+1)| = 2z = |V(MPz,1,2)|.

(b) Rx(a ja′j) = V(MPz,1,2) − {a′j+2, a
′
j+3, a

′
z+ j−2, az+ j−3},

Rx(a ja j+2) = V(MPz,1,2) − {a j+1, a′j+1, a n+2 j+2
2
, a′n+2 j+2

2

},

Rx(a′ja
′
j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6, ...., a z+ j−1

2
, a z+2 j+2

2
, a z+2 j+6

2
, ...., az+ j−6, az+ j−3, az+ j−1}. �

The RLN sets are classified in Table 4 and it is clear that |Rx(a ja j+1)| is less then all other RLN sets
ofMPz,1,2.

Table 4. Cardinality of each LRN set.

RLN Set Cardinality
Rx(a ja′j) 2z − 4 > z + 2
Rx(a ja j+2) 2z − 4 > z + 2
Rx(a′ja

′
j+1) 2z − 4 > z + 2

Theorem 4.8. LetMPz,1,2 be a modified prism network, where z � 2 (mod 4). Then

z
z−2 ≤ dimLF(MPz,1,2) ≤ 2z

z+2 .

Proof. Case 1. For z = 6 , we have the following RLN sets;
Rx(a1a2) = V(MP6,1,2) − {a3, a6, a′3, a

′
5, a

′
6},

Rx(a2a3) = V(MP6,1,2) − {a4, a1, a′4, a
′
6, a

′
1},

Rx(a3a4) = V(MP6,1,2) − {a5, a2, a′5, a
′
1, a

′
2},

Rx(a4a5) = V(MP6,1,2) − {a6, a3, a′6, a
′
2, a

′
3},

Rx(a5a6) = V(MP6,1,2) − {a1, a4, a′1, a
′
3, a

′
4},

Rx(a6a1) = V(MP6,1,2) − {a2, a5, a′2, a
′
4, a

′
5},

Rx(a1a′1) = V(MP6,1,2) − {a′3, a
′
4, a

′
5},

Rx(a2a′2) = V(MP6,1,2) − {a′4, a
′
5, a

′
6},

Rx(a3a′3) = V(MP6,1,2) − {a′5, a
′
6, a

′
1},

Rx(a4a′4) = V(MP6,1,2) − {a′6, a
′
1, a

′
2},

Rx(a5a′5) = V(MP6,1,2) − {a′1, a
′
2, a

′
3},
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Rx(a6a′6) = V(MP6,1,2) − {a′2, a
′
3, a

′
4},

Rx(a1a3) = V(MP6,1,2) − {a2, a5, a′2, a
′
5},

Rx(a2a4) = V(MP6,1,2) − {a3, a6, a′3, a
′
6},

Rx(a3a5) = V(MP6,1,2) − {a4, a1, a′4, a
′
1},

Rx(a4a6) = V(MP6,1,2) − {a5, a2, a′5, a
′
2},

Rx(a5a1) = V(MP6,1,2) − {a6, a3, a′6, a
′
3},

Rx(a6a2) = V(MP6,1,2) − {a1, a4, a′1, a
′
4},

Rx(a′1a′2) = V(MP6,1,2) − {a3, a6},

Rx(a′2a′3) = V(MP6,1,2) − {a4, a1},

Rx(a′3a′4) = V(MP6,1,2) − {a5, a2},

Rx(a′4a′5) = V(MP6,1,2) − {a6, a3},

Rx(a′5a′6) = V(MP6,1,2) − {a1, a4},

Rx(a′1a′6) = V(MP6,1,2) − {a2, a5}.

For 1 ≤ j ≤ 6 it is clear that |Rx(a ja j+1)| = 7 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the
other RLN sets of MP6,1,2). Then there exits an upper LRF η : V(MP6,1,2) → [0, 1] is defined as
η(y) = 1

7 for each y ∈ V(MP6,1,2). In order to show that η(y) is a minimal LRF, we define another LRF
η′(y) : V(MP6,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not a

LRF of MP6,1,2 hence dimLF(MP6,1,2) ≤
12∑
1

1
8 = 3

2 . In the same context, for 1 ≤ j ≤ z it is clear that

|Rx(a ja j+2)| = 12 and |Rx(a ja j+2)| ≥ |Rx(e)|, where Rx(e) are the other resolving local neighbour sets of
MP6,1,2). Then there exits a lower LRF η : V(MP6,1,2) → [0, 1] and it is defined as η(y) = 1

21 for each

y ∈ V(MP6,1,2) hence dimLF(MP6,1,2) ≥
12∑
1

1
10 = 6

5 . Since MP6,1,2 is a non bipartite network so its lower

bound must be greater then 1. Consequently,
6
5 < dimLF(MP6,1,2) ≤ 3

2 .

Case 2. For 1 ≤ j ≤ z from Lemma 4.7 that |Rx(a ja j+1)| = z and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e)
are the other RLN sets of MPz,1,2. Then there exits an upper LRF η : V(MPz,1,2) → [0, 1] and it is
defined as η(y) = 1

z+2 for each y ∈ V(MPz,1,2). In order to show that η is a minimal upper LRF, we define
another LRF η′ : V(MPz,1,2) → [0, 1] as |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not a

LRF ofMP6,1,2 hence by Lemma X dimLF(MPz,1,2) ≤
2z∑
j=1

1
z+2 = 2z

z+2 . In the same way, for 1 ≤ j ≤ z it

is clear from Lemma 4.7 |Rx(a ja j+1)| = 2z− 4 and |Rx(a ja j+2)| ≥ |Rx(e)|, where Rx(e) are the other RLN
sets ofMPz,1,2). Then there exits a lower LRF η : V(MPz,1,2)→ [0, 1] and it is defined as η(y) = 1

z−1 for

each y ∈ V(MPz,1,2) hence by Lemma YdimLF(MPz,1,2) ≥
2z∑
j=1

1
2z−4 = z

z−2 . Consequently,

z
z−2 ≤ dimLF(MPz,1,2) ≤ 2z

z+2 .

�

5. RLN sets LFMD of modified prism networkMQz,1,2

In this section, we compute RLN sets and LFMD of modified prism networkMQz,1,2 in the form of
bounds.
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Lemma 5.1. LetMQz,1,2 be a modified prism network, where z � 2 ( mod 4) . Then

(a) |Rx(a ja j+1)| = 3z+6
2 and

3z⋃
j=1

Rx(a ja j+1) = V(MQz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
3z⋃
j=1

Rx(a ja j+1) ∩ Rx(y)| > |Rx(a ja j+1)| where |Rx(e)| are the other possible

RLN sets.

Proof. Let ai inner, a′i middle and bi be the outer vertices of modified generalized Prism network,
for 1 ≤ j ≤ z , where z + 1 � 1( mod z), we have the following possibilities
(a) Rx(a ja j+1) = V(MQz,1,2) − {a j+2, a j+4, a j+6....., a z+ j−1

2
, a z+2 j+2

2
, a z+2 j+6

2
, a z+2 j+10

2
, .....az+i−5, az+i−3, az+i−1} ∪

{a′j+2, a
′
j+4, a

′
j+6....., a

′
z+ j−1

2

, a′z+2 j+2
2

, a′z+2 j+6
2

, a′z+2 j+10
2

, .....a′z+i−5, a
′
z+i−3, a

′
z+i−1} ∪

{b j+2, b j+4, b j+6....., b z+ j−1
2
, b z+2 j+2

2
, b z+2 j+6

2
, b z+2 j+10

2
, .....bz+i−5, bz+i−3, bz+i−1} and |Rx(a ja j+1)| = 3z+6

2 and

|
3z⋃
j=1

Rx(a ja j+1)| = 3z = |V(MQz,1,2)|.

(b) Rx(a ja′j) = V(MQz,1,2) − {a j+2, ai+3, az+ j−3, az+ j−2, b j+2, b j+3, bz+ j−3, bz+ j−2},
Rx(a ja j+2) = V(MQz,1,2) − {a j+1, a z+2 j+2

2
, a′j+1, a

′
z+2 j+2

2

, b j+1, b z+2 j+2
2
}, Rx(a′ja

′
j+1) = V(MQz,1,2) − {az+ j−1},

Rx(b jb j+1) = V(MQz,1,2) − {a j+2}, Rx(a′jb j) = V(MQz,1,2). �

The RLN sets classified in Table 5 and it is clear that |Rx(a ja j+1| is less then all other RLN sets of
MQz,1,2.

Table 5. Cardinality of each LRN set.

RLN Set Cardinality
Rx(a ja′j) 3z − 4 > 3z+6

2
Rx(a ja j+2) 3z − 4 > 3z+6

2
Rx(a′jb j) 3z > 3z+6

2
Rx(a′ja

′
j+1) 3z − 1 > 3z+6

2
Rx(b jb j+1) 3z − 1 > 3z+6

2

Theorem 5.2. LetMQz,1,2 be a modified prism network, where z � 2 (mod 4). Then

1 < dimLF(MPz,1,2) ≤
2z

z + 2
.

Proof. Case 1. For z = 6, we have the following RLN sets
Rx(a1a2) = V(MQ6,1,2) − {a3, a6, a′3, a

′
6, b3, b6},

Rx(a2a3) = V(MQ6,1,2) − {a4, a1, a′4, a
′
1, b4, b1},

Rx(a3a4) = V(MQ6,1,2) − {a5, a6, a′5, a
′
2, b5, b2},

Rx(a4a5) = V(MQ6,1,2) − {a6, a1, a′6, a
′
3, b6, b3},

Rx(a5a6) = V(MQ6,1,2) − {a1, a2, a′1, a
′
2, b1, b4},

Rx(a6a1) = V(MQ6,1,2) − {a2, a3, a′2, a
′
3, b2, b5},

Rx(a1a′1) = V(MQ6,1,2) − {a′3, a
′
4, a

′
5, b3, b4, b5},

Rx(a2a′2) = V(MQ6,1,2) − {a′4, a
′
5, a

′
6, b4, b5, b6},
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Rx(a3a′4) = V(MQ6,1,2) − {a′5, a
′
6, a

′
1, b5, b6, b1},

Rx(a4a′4) = V(MQ6,1,2) − {a′6, a
′
1, a

′
2, b6, b1, b2},

Rx(a5a′5) = V(MQ6,1,2) − {a′1, a
′
2, a

′
3, b1, b2, b3},

Rx(a6a′6) = V(MQ6,1,2) − {a′2, a
′
3, a

′
4, b2, b3, b4},

Rx(a1a3) = V(MQ6,1,2) − {a2, a5, a′2, a
′
5, b2, b5},

Rx(a2a4) = V(MQ6,1,2) − {a3, a6, a′3, a
′
6, b3, b6},

Rx(a3a5) = V(MQ6,1,2) − {a4, a1, a′4, a
′
1, b4, b1},

Rx(a4a6) = V(MQ6,1,2) − {a5, a2, a′5, a
′
2, b5, b2},

Rx(a5a1) = V(MQ6,1,2) − {a6, a3, a′6, a
′
3, b6, b3},

Rx(a6a2) = V(MQ6,1,2) − {a1, a4, a′6, a
′
4, b1, b4},

Rx(a′1a′2) = V(MQ6,1,2) − {a3, a6},

Rx(a′2a′3) = V(MQ6,1,2) − {a4, a5},

Rx(a′3a′4) = V(MQ6,1,2) − {a5, a6},

Rx(a′4a′5) = V(MQ6,1,2) − {a6, a1},

Rx(a′5a′6) = V(MQ6,1,2) − {a1, a2},

Rx(a′6a′1) = V(MQ6,1,2) − {a2, a3},

Rx(b1b2) = V(MQ6,1,2) − {a3, a6},

Rx(b2b3) = V(MQ6,1,2) − {a4, a1},

Rx(b3b4) = V(MQ6,1,2) − {a5, a2},

Rx(b4b5) = V(MQ6,1,2) − {a6, a1},

Rx(b5b6) = V(MQ6,1,2) − {a1, a2},

Rx(b1b6) = V(MQ6,1,2) − {a2, a1},

Rx(a′1b1) = V(MQ6,1,2),
Rx(a′2b2) = V(MQ6,1,2),
Rx(a′3b3) = V(MQ6,1,2),
Rx(a′4b4) = V(MQ6,1,2),
Rx(a′5b5) = V(MQ6,1,2),
Rx(a′6b6) = V(MQ6,1,2),
Rx(a′6b6) = V(MP6,1,2).

For 1 ≤ j ≤ 6 it is clear that |Rx(a ja j+1)| = 12 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the
other RLN sets of MQ6,1,2. Then there exits an upper LRF η : V(MP6,1,2) → [0, 1] and is defined as
η(y) = 1

12 for each y ∈ V(MQ6,1,2). In order to show that η(y) is a minimal LRF, we define another
LRF η(y)′ : V(MP6,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not

LRF. Therefore, dimLF(MQ6,1,2) ≤
18∑
1

1
12 = 3

2 . For 1 ≤ j ≤ 6 it is clear from the above RLN sets

that |Rx(b jb j+1)| = 18 and |Rx(b jb j+1)| ≥ |Rx(e)|, where Rx(e) are other RLN sets of MQ6,1,2). Then
there exits a lower LRF η : V(MQ6,1,2) → [0, 1] and it is defined as η(y) = 1

18 for each y ∈ V(MQ6,1,2)

hence dimLF(MQ6,1,2) ≥
18∑
1

1
18 = 1. SinceMQ6,1,2 is a non-bipartite network so its lower bound must be

greater then 1. Consequently,

1 < dimLF(MQ6,1,2) ≤ 3
2 .

Case 2. For 1 ≤ j ≤ z from Lemma 5.1 it is clear from the above resolving local neighbourhood sets
that |Rx(a ja j+1)| = 2

3z+6 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the other RLN sets ofMQz,1,2). Then
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there exits an upper LRF η : V(MQz,1,2)→ [0, 1] and it is defined as η(y) = 2
3n+6 for each y ∈ V(MQz,1,2).

In order to show that η is a minimal LRF, we define another LRF η′ : V(MQz,1,2) → [0, 1] such that
|η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not a LRF ofMQ6,1,2. Therefore by Lemma X

dimLF(MQz,1,2) ≤
3z∑
j=1

2
3z+6 = 2z

z+2 .

For 1 ≤ j ≤ z it is clear from Lemma 5.1 |Rx(a′jb
′
j)| = 3z and |Rx(b jb j+1)| ≥ |Rx(e)|, where Rx(e)

are the other RLN sets ofMQz,1,2. Then there exits a maximal lower LRF η : V(MPz,1,2)→ [0, 1] and it

is defined as η(y) = 1
3z for each y ∈ V(MQz,1,2). Hence by Lemma Y dimLF(MQz,1,2) ≥

3z∑
j=1

1
3z = 1. Since

MQz,1,2 is a non-bipartite network so its lower of LFMD bound must be greater then 1. Consequently,

1 < dimLF(MQz,1,2) ≤ 2z
z+2 .

�

Lemma 5.3. LetMQz,1,2 be a modified prism network, where z � 0 ( mod 4) . Then

(a) |Rx(a ja j+1)| = 3z
2 and

3z⋃
j=1

Rx(a ja j+1) = V(MQz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
3z⋃
j=1

Rx(a ja j+1)∩Rx(y)| > |Rx(a ja j+1)|, where |Rx(y)| are the other possible

RLN sets.

Proof. Let ai inner, a′i middle and bi be the outer vertices of modified generalized Prism network,
for 1 ≤ j ≤ z , where z + 1 � 1( mod z), we have following possibilities
(a) Rx(a ja j+1) = V(MQz,1,2) − {a j+2, a j+4, a j+6....., a z+ j−1

2
, a z+2 j+2

2
, a z+2 j+6

2
, a z+2 j+10

2
, .....az+i−5, az+i−3, az+i−1} ∪

{a′j+2, a
′
j+4, a

′
j+6....., a

′
z+ j−1

2

, a′z+2 j+2
2

, a′z+2 j+6
2

, a′z+2 j+10
2

, .....a′z+i−5, a
′
z+i−3, a

′
z+i−1}{b j+2, b j+4, b j+6....., b z+ j−1

2
, b z+2 j+2

2
, b z+2 j+6

2
,

b z+2 j+10
2
, .....bz+i−5, bz+i−3, bz+i−1} and |Rx(a ja j+1)| = 3z

2 and |
3z⋃
j=1

Rx(a ja j+1)| = 3z = |V(MQz,1,2)|.

(b) Rx(a ja′j) = V(MQz,1,2) − {a j+2, ai+3, az+ j−3, az+ j−2, b j+2, b j+3, bz+ j−3, bz+ j−2},
Rx(a ja j+2) = V(MQz,1,2) − {a j+1, a z+2 j+2

2
, a′j+1, a

′
z+2 j+2

2

, b j+1, b z+2 j+2
2
}, Rx(a′ja

′
j+1) = V(MQz,1,2) − {az+ j−1},

Rx(b jb j+1) = V(MQz,1,2) − {a j+2}, Rx(a′jb j) = V(MQz,1,2). �

The RLN sets are classified in Table 6 and it is clear that |Rx(a ja j+1| is less then all other RLN sets
ofMQz,1,2.

Table 6. Cardinality of each LRN set.

RLN Set Cardinality
Rx(a ja′j) 3z − 4 > 3z

2
Rx(a ja j+2) 3z − 4 > 3z

2
Rx(a′jb j) 3z > 3z

2
Rx(a′ja

′
j+1) 3z − 1 > 3z

2
Rx(b jb j+1) 3z − 1 > 3z

2

Theorem 5.4. LetMQz,1,2 be a modified prism network , where z � 0 (mod 4). Then

1 ≤ dimLF(MQz,1,2) ≤ 2.
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Proof. Case 1. For z = 8 , we have the following RLN sets;
Rx(a1a2) = V(MQ8,1,2) − {a3, a5, a6, a8, a′3, a

′
5, a

′
6, a

′
8, b3, b5, b7, b8},

Rx(a2a3) = V(MQ8,1,2) − {a4, a6, a1, a2, a′4, a
′
6, a

′
7, a

′
1, b4, b6, b8, b1},

Rx(a3a4) = V(MQ8,1,2) − {a5, a7, a8, a3, a′5, a
′
7, a

′
8, a

′
2, b5, b7, b1, b2},

Rx(a4a5) = V(MQ8,1,2) − {a6, a8, a1, a4, a′6, a
′
8, a

′
1, a

′
3, b6, b8, b2, b3},

Rx(a5a6) = V(MQ8,1,2) − {a7, a1, a2, a5, a′7, a
′
1, a

′
2, a

′
4, b7, b1, b3, b4},

Rx(a6a7) = V(MQ8,1,2) − {a8, a2, a3, a6, a′8, a
′
2, a

′
3, a

′
5, b8, b2, b4, b5},

Rx(a7a8) = V(MQ8,1,2) − {a1, a3, a4, a7, a′1, a
′
3, a

′
4, a

′
6, b1, b3, b5, b6},

Rx(a1a8) = V(MQ8,1,2) − {a2, a4, a5, a8, a′2, a
′
4, a

′
5, a

′
7, b2, b4, b6, b7},

Rx(a1a′1) = V(MQ8,1,2) − {a′3, a
′
4, a

′
6, a

′
7, b3, b4, b6, b7},

Rx(a2a′2) = V(MQ8,1,2) − {a′4, a
′
5, a

′
7, a

′
8, b4, b5, b7, b8},

Rx(a3a′3) = V(MQ8,1,2) − {a′5, a
′
6, a

′
8, a

′
1, b5, b6, b8, b1},

Rx(a4a′4) = V(MQ8,1,2) − {a′6, a
′
7, a

′
1, a

′
2, b6, b7, b1, b2},

Rx(a5a′5) = V(MQ8,1,2) − {a′7, a
′
8, a

′
2, a

′
3, b7, b8, b2, b3},

Rx(a6a′6) = V(MQ8,1,2) − {a′8, a
′
1, a

′
3, a

′
4, b8, b1, b3, b4},

Rx(a7a′7) = V(MQ8,1,2) − {a′1, a
′
2, a

′
4, a

′
5, b1, b2, b4, b5},

Rx(a8a′8) = V(MQ8,1,2) − {a′2, a
′
3, a

′
5, a

′
6, b2, b3, b5, b6},

Rx(a′1a′2) = V(MQ8,1,2) − {a3, a5, a6, a8, },

Rx(a′2a′3) = V(MQ8,1,2) − {a4, a6, a7, a1},

Rx(a′3a′4) = V(MQ8,1,2) − {a5, a7, a8, a2},

Rx(a′4a′5) = V(MQ8,1,2) − {a6, a8, a1, a3},

Rx(a′5a′6) = V(MQ8,1,2) − {a7, a1, a2, a4},

Rx(a′6a′7) = V(MQ8,1,2) − {a8, a2, a3, a5},

Rx(a′7a′8) = V(MQ8,1,2) − {a1, a3, a4, a6},

Rx(a′8a′1) = V(MQ8,1,2) − {a2, a4, a5, a7},

Rx(a1a3) = V(MQ8,1,2) − {a2, a6, a′2, a
′
6, b2, b6},

Rx(a2a4) = V(MQ8,1,2) − {a3, a7, a′3, a
′
7, b3, b7},

Rx(a3a5) = V(MQ8,1,2) − {a4, a8, a′4, a
′
8, b4, b8},

Rx(a4a6) = V(MQ8,1,2) − {a5, a1, a′5, a
′
1, b5, b1},

Rx(a5a7) = V(MQ8,1,2) − {a6, a2, a′6, a
′
2, b6, b2},

Rx(a6a8) = V(MQ8,1,2) − {a3, a7, a′3, a
′
7, b7, b3},

Rx(a7a1) = V(MQ8,1,2) − {a8, a1, a′8, a
′
1, b8, b4},

Rx(a8a2) = V(MQ8,1,2) − {a1, a5, a′1, a
′
5, b1, b5},

Rx(b1b2) = V(MQ8,1,2) − {a3, a5, a6, a8},

Rx(b2b3) = V(MQ8,1,2) − {a4, a6, a7, a1},

Rx(b3b4) = V(MQ8,1,2) − {a5, a7, a8, a2},

Rx(b4b5) = V(MQ8,1,2) − {a6, a8, a1, a3},

Rx(b5b6) = V(MQ8,1,2) − {a7, a1, a2, a4},

Rx(b6b7) = V(MQ8,1,2) − {a8, a2, a3, a5},

Rx(b7b8) = V(MQ8,1,2) − {a1, a3, a4, a6},

Rx(b8b1) = V(MQ8,1,2) − {a2, a4, a5, a7},

Rx(a′1b1) = V(MQ8,1,2),
Rx(a′2b2) = V(MQ8,1,2),
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Rx(a′3b3) = V(MQ8,1,2),
Rx(a′4b4) = V(MQ8,1,2),
Rx(a′5b5) = V(MQ8,1,2),
Rx(a′6b6) = V(MQ8,1,2),
Rx(a′7b7) = V(MQ8,1,2),
Rx(a′8b8) = V(MQ8,1,2).

For 1 ≤ j ≤ 8 it is clear that |Rx(a ja j+1)| = 12 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the
other RLN sets of MQ8,1,2). Then there exits an upper LRF η : V(MQ8,1,2) → [0, 1] and it is defined
as η(y) = 1

8 for each y ∈ V(MQ8,1,2). In order to show that η(y) is a minimal LRF, we define another
resolving function η(y)′ : V(MQ8,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows

that η′ is not a LRF of MQ8,1,2 hence by Lemma XdimLF(MQ8,1,2) ≤
24∑
1

1
12 = 2. In the same context,

for 1 ≤ j ≤ z it is clear from the above RLN sets that |Rx(a ja j+2)| = 12 and |Rx(a′ja
′
j+1)| ≥ |Rx(e)|,

where Rx(e) are the other RLN sets of MQ8,1,2. Then there exits a lower LRF η : V(MQ8,1,2) → [0, 1]

such that η(y) = 1
24 for each y ∈ V(MQ8,1,2) hence dimLF(MQ8,1,2) ≥

24∑
1

1
24 = 1. Since MQ8,1,2 is non

bipartite network so its lower bound of LFMD must be greater then 1. Consequently,

1 < dimLF(MQ8,1,2) ≤ 2.

Case 2. For 1 ≤ j ≤ z it is clear that |Rx(a ja j+1)| = z and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are
the other RLN sets of MQz,1,2. Then there exits an upper LRF η : V(MQz,1,2) → [0, 1] is defined as
η(y) = 1

z for each y ∈ V(MQz,1,2). In order to show that η is a minimal LRF, we define another LRF
η′ : V(MQz,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not a LRF

ofMQ8,1,2 hence by Lemma X dimLF(MPz,1,2) ≤
3z∑
j=1

2
3z = 2. In the same way, for 1 ≤ j ≤ z it is clear

from Lemma 5.3 that |Rx(a′jb j)| = 3z and |Rx(a′jb j)| ≥ |Rx(e)|,where Rx(e) are the other resolving local
neighbour sets of MQz,1,2). Then there exits a maximal lower LRF η : V(MQz,1,2) → [0, 1] and it is

defined as η(y) = 1
3z for each y ∈ V(MQz,1,2) hence by Lemma YdimLF(MQz,1,2) ≥

3z∑
j=1

1
3z = 1. Since

MQz,1,2 is a non-bipartite network so its lower bound of LFMD must be greater then 1. Consequently,

1 < dimLF(MQz,1,2) ≤ 2.

�

Lemma 5.5. LetMQz,1,2 be a modified prism network, where z � 1 (mod 4) . Then

(a) |Rx(a ja j+1)| = 3z−3
2 and

z⋃
j=1

Rx(a ja j+1) = V(MQz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
z⋃

j=1
Rx(a ja j+1) ∩ Rx(y)| > |Rx(a ja j+1)| where |Rx(y)| are the other possible

RLN sets.

Proof. Let a j inner, a′j middle and b j are be the outer vertices of modified prism network,
for 1 ≤ j ≤ z , where z + 1 � (1 mod z), we have following possibilities
(a) Rx(a ja j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6....., az+i−5, az+i−3, az+i−1} ∪

{a′j+2, a
′
j+4, a

′
j+6, ....., a

′
z+i−5, a

′
z+i−3, a

′
z+i−1} ∪ ∪{b j+2, b j+4, b j+6, ....., bz+i−5, bz+i−3, bz+i−1} ∪ {a z+2i+2

2
} ∪ {a′z+2i+2

2
}
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and |Rx(a ja j+1)| = z − 1 and |
3z⋃
j=1

Rx(a ja j+1)| = 3z = |V(MPz,1,2)|.

(b) Rx(a ja′j) = V(MPz,1,2) − {a′j+2, a
′
j+3, a

′
z+ j−3, az+ j−4, b j+2, b j+3, bz+ j−3, bz+ j−4},

Rx(a ja j+2) = V(MPz,1,2) − {a j+1, a′j+1, b j+1, a z+2 j+1
2
, a′z+2 j+1

2

, b z+2 j+1
2
},Rx(b jb j+1) = Rx(a′ja

′
j+1) =

V(MPz,1,2) − {a j+2, a j+4, a j+6, ...., az+ j−3, az+ j−1} ∪ {a z+2 j+1
2
} ∪ {a′z+2 j+1

2

, b z+2 j+1
2
}. Rx(a′jb j) = V(MPz,1,2). �

The RLN sets are classified in Table 7 and it is clear |Rx(a ja j+1)| is less then all other RLN sets of
MQz,1,2.

Table 7. Cardinality of each LRN set.

RLN Set Cardinality
Rx(a ja′j) 3z − 8 > 3z−3

2
Rx(a ja j+2) 3z − 6 > 3z−3

2
Rx(a′ja

′
j+1) 5x − 25 > 3z−3

2
Rx(a′jb j) 3z > 3z−3

2
Rx(b ja j+1) 5z − 25 > 3z−3

2

Theorem 5.6. LetMPz,1,2 be a modified prism network , where z � 1 (mod 4). Then

1 < dimLF(MPz,1,2) ≤ 2z
z−1 .

Proof. Case 1. For z = 5, we have the following RLN sets
Rx(a1a2) = {a1, a2, a′1, a

′
2, b1, b2},

Rx(a2a3) = {a2, a3, a′2, a
′
3, b2, b3},

Rx(a3a4) = {a3, a4, a′3, a
′
4, b3, b4},

Rx(a4a5) = {a4, a5, a′4, a
′
5, b4, b5},

Rx(a5a1) = {a1, a5, a′1, a
′
5, b5, b1},

Rx(a1a3) = {a1, a3, a′1, a
′
3, b1, b3},

Rx(a1a4) = {a1, a4, a′1, a
′
4, b2, b4},

Rx(a2a4) = {a2, a4, a′2, a
′
4, b3, b5},

Rx(a2a5) = {a2, a5, a′2, a
′
5, b4, b1},

Rx(a3a5) = {a3, a5, a′3, a
′
5, b5, b2},

Rx(a1a′1) = V(MP5,1,2) − {a′3, a
′
4, b3, b4},

Rx(a2a′2) = V(MP5,1,2) − {a′4, a
′
5, b4, b5},

Rx(a3a′3) = V(MP5,1,2) − {a′5, a
′
1, b5, b1},

Rx(a4a′4) = V(MP5,1,2) − {a′1, a
′
2, b1, b2},

Rx(a5a′5) = V(MP5,1,2) − {a′2, a
′
3, b2, b3},

Rx(a′1a′2) = V(MP5,1,2) − {a3, a4, a5, a′4, b4},

Rx(a′2a′3) = V(MP5,1,2) − {a4, a5, a1, a′5, b5},

Rx(a′3a′4) = V(MP5,1,2) − {a5, a1, a2, a′1, b1},

Rx(a′4a′5) = V(MP5,1,2) − {a1, a2, a3, a′2, b5},

Rx(a′5a′1) = V(MP5,1,2) − {a2, a3, a4, a′3, b1},

Rx(b1b2) = V(MP5,1,2) − {a3, a4, a5, a′4, b4},

Rx(b2b3) = V(MP5,1,2) − {a4, a5, a1, a′5, b5},
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Rx(b3b4) = V(MP5,1,2) − {a5, a1, a2, a′1, b1},

Rx(b4b5) = V(MP5,1,2) − {a1, a2, a3, a′2, b2},

Rx(b5b1) = V(MP5,1,2) − {a2, a3, a4, a′3, b3},

Rx(a′1b1) = V(MP5,1,2),
Rx(a′2b2) = V(MP5,1,2),
Rx(a′3b3) = V(MP5,1,2),
Rx(a′4b4) = V(MP5,1,2),
Rx(a′5b5) = V(MP5,1,2).

For 1 ≤ j ≤ 5 it is clear that |Rx(a ja j+1)| = 8 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the other
RLN sets of MQ5,1,2. Then there exists an upper LRF η : V(MQ5,1,2) → [0, 1] and it is defined as
η(y) = 1

6 for each y ∈ V(MQ5,1,2. In order to show that η(y) is a minimal resolving local function, we
define another resolving function η′(y) : V(MQ5,1,2)→ [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1

which shows that η′ is not a LRF of MP5,1,2 hence dimLF(MQ5,1,2) ≤
15∑
1

1
6 = 5

2 . In the same context,

for 1 ≤ j ≤ z it is clear that |Rx(a ja′j)| = 8 and |Rx(a′jb j)| ≥ |Rx(e)|,where Rx(e) are the other RLN
sets of MQ5,1,2. Then there exits a maximal lower LRF η : V(MQ5,1,2) → [0, 1] and it is defined as

η(y) = 1
15 for each y ∈ V(MQ5,1,2) hence dimLF(MQ5,1,2) ≥

15∑
1

1
15 = 1. Since MQ5,1,2) is a non bipartite

network so its lower bound must be greater then 1. Consequently,

1 < dimLF(MQ5,1,2) ≤ 5
2 .

Case 2. For 1 ≤ j ≤ z from Lemma 5.5 it is clear that |Rx(a ja j+1)| = z + 1 and |Rx(a ja j+1)| ≤ |Rx(e)|,
where Rx(e) are the other RLN sets ofMQz,1,2). Then there exists an upper LRF η : V(MQz,1,2)→ [0, 1]
and it is defined as η(y) = 1

z−1 for each y ∈ V(MQz,1,2). In order to show that η is a minimal LRF, we
define another LRF η′ : V(MPz,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows

that η′ is not a LRF of MQ5,1,2 . Therefore, by Lemma X dimLF(MQz,1,2) ≤
3z∑
j=1

2
3z−3 = 2z

z−1 . In the same

context, for 1 ≤ j ≤ z it is clear from Lemma 5.5 that |Rx(a′jb j)| = 3z and |Rx(a′jb j)| ≥ |Rx(e)|, where
Rx(e) are the other RLN sets of MQz,1,2. Then there exists an upper LRF η : V(MPz,1,2) → [0, 1] and

it is defined as η(y) = 1
3z for each y ∈ V(MQ) hence by Lemma Y dimLF(MQz,1,2) ≥

3z∑
j=1

1
3z = 1. Since

MQz,1,2 is a non-bipartite network so its lower bound of LFMD must be greater then 1. Consequently,

1 < dimLF(MQz,1,2) ≤ 2z
z−1 .

�

Lemma 5.7. LetMQz,1,2 be a modified prism network, where z � 3( mod 4) . Then

(a) |Rx(a ja j+1)| = 3z+3
2 and

3z⋃
j=1

Rx(a ja j+1) = V(MQz,1,2).

(b) |Rx(a ja j+1)| < |Rx(y)|, and |
3z⋃
j=1

Rx(a ja j+1) ∩ Rx(y)| > |Rx(a ja j+1)| where |Rx(y)| are the other possible

resolving local neighbourhood sets.

Proof. Let ai inner, a′i middle and bi be the outer vertices of modified generalized prism network,
for 1 ≤ j ≤ z , where z + 1 � (1 mod z), we have following possibilities
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(a) Rx(a ja j+1) =

V(MPz,1,2) − {a j+2, a j+4, a j+6, ...., az+i−1} ∪ {a′j+2, a
′
j+4, a

′
j+6, ...., a

′
z+i−1} ∪ {b j+2, b j+4, b j+6, ...., bz+i−1} and

|Rx(a ja j+1)| = 3z+3
2 and |

3z⋃
j=1

Rx(a ja j+1)| = 3z = |V(MPz,1,2)|.

(b) Rx(a ja′j) = V(MPz,1,2) − {a′j+2, a
′
j+3, a

′
z+ j−3, az+ j−2, b j+2, b j+3, bz+ j−3, bz+ j−2},

Rx(a ja j+2) = V(MPz,1,2) − {a j+1, a′j+1, b j+1},
Rx(a′ja

′
j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6, ..., az+ j−1, a′z+2 j+1

2

, b z+2 j+1
2
},

Rx(b jb j+1) = V(MPz,1,2) − {a j+2, a j+4, a j+6, ..., az+i−1, a′z+2 j+1
2

, b z+2 j+1
2
}, Rx(a′jb j) = V(MPz,1,2). �

The RLN sets are classified in Table 8 and it is clear that |Rx(a ja j+1)| is less then all other RLN sets
MQz,1,2.

Table 8. Cardinality of each LRN set.

RLN Set Cardinality
Rx(a ja′j) 3z − 4 > 3z+3

2
Rx(a ja j+2) 3z − 4 > 3z+3

2
Rx(a′jb j) 3z > 3z+3

2
Rx(a′ja

′
j+1) 3z − 1 > 3z+3

2
Rx(b jb j+1) 3z − 1 > 3z+3

2

Theorem 5.8. LetMQz,1,2 be a generalized modified prism network, where z � 3 (mod 4). Then

1 < dimLF(MQz,1,2) ≤ 2z
z+2 .

Proof. Case 1. For z = 7, we have the following RLN sets
Rx(a1a2) = V(MQ7,1,2) − {a3, a5, a7, a′3, a

′
5, a

′
7, b3, b5, b7},

Rx(a2a3) = V(MQ7,1,2) − {a4, a6, a1, a′4, a
′
6, a

′
1, b4, b6, b1},

Rx(a3a4) = V(MQ7,1,2) − {a5, a7, a2, a′5, a
′
7, a

′
2, b5, b7, b2},

Rx(a4a5) = V(MQ7,1,2) − {a6, a1, a3, a′6, a
′
1, a

′
3, b6, b1, b3},

Rx(a5a6) = V(MQ7,1,2) − {a7, a2, a4, a′7, a
′
2, a

′
4, b7, b2, b4},

Rx(a6a7) = V(MQ7,1,2) − {a1, a3, a5, a′1, a
′
3, a

′
5, b1, b3, b5},

Rx(a7a1) = V(MQ7,1,2) − {a2, a4, a6, a′2, a
′
4, a

′
6, b2, b4, b6},

Rx(a1a′1) = V(MQ7,1,2) − {a′3, a
′
4, a

′
5, a

′
6, b3, b4, b5, b6},

Rx(a2a′2) = V(MQ7,1,2) − {a′4, a
′
5, a

′
6, a

′
7, b4, b5, b6, b7},

Rx(a3a′3) = V(MQ7,1,2) − {a′5, a
′
6, a

′
7, a

′
1, b5, b6, b7, b1},

Rx(a4a′4) = V(MQ7,1,2) − {a′6, a
′
7, a

′
1, a

′
2, b5, b7, b1, b2},

Rx(a5a′5) = V(MQ7,1,2) − {a′7, a
′
1, a

′
2, a

′
3b6, b1, b2, b3},

Rx(a6a′6) = V(MQ7,1,2) − {a′1, a
′
2, a

′
3, a

′
4, b7, b2, b3, b4},

Rx(a7a′7) = V(MQ7,1,2) − {a′2, a
′
3, a

′
4, a

′
5, b1, b3, b4, b5},

Rx(a1a3) = V(MQ7,1,2) − {a2, a′2, b2},

Rx(a2a4) = V(MQ7,1,2) − {a3, a′3, b3},

Rx(a3a5) = V(MQ7,1,2) − {a4, a′4, b4},

Rx(a4a6) = V(MQ7,1,2) − {a5, a′5, b5},

Rx(a5a7) = V(MQ7,1,2) − {a6, a′6, b6},
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Rx(a6a1) = V(MQ7,1,2) − {a7, a′7, b7},

Rx(a7a2) = V(MQ7,1,2) − {a1, a′1, b1},

Rx(b1b2) = V(MQ7,1,2) − {a3, a5, a7, b5},

Rx(b2b3) = V(MQ7,1,2) − {a4, a6, a1, b6},

Rx(b3b4) = V(MQ7,1,2) − {a5, a7, a2, b7},

Rx(b4b5) = V(MQ7,1,2) − {a6, a1, a3, b1},

Rx(b5b6) = V(MQ7,1,2) − {a7, a2, a4, b2},

Rx(b6b7) = V(MQ7,1,2) − {a1, a3, a5, b3},

Rx(b7b1) = V(MQ7,1,2) − {a2, a4, a6, b4},

Rx(a′1a′2) = V(MQ7,1,2) − {a3, a5, a7, a′5, b5},

Rx(a′2a′3) = V(MQ7,1,2) − {a4, a6, a1, a′6, b6},

Rx(a′3a′4) = V(MQ7,1,2) − {a5, a7, a2, a′7, b7},

Rx(a′4a′5) = V(MQ7,1,2) − {a6, a1, a3, a′1, b1},

Rx(a′5a′6) = V(MQ7,1,2) − {a7, a2, a4, a′2, b2},

Rx(a′6a′7) = V(MQ7,1,2) − {a1, a3, a5, a′3, b3},

Rx(a′7a′1) = V(MQ7,1,2) − {a2, a4, a6, a′4, b4},

Rx(a′1b1) = V(MQ7,1,2),
Rx(a′2b2) = V(MQ7,1,2),
Rx(a′3b3) = V(MQ7,1,2),
Rx(a′4b4) = V(MQ7,1,2),
Rx(a′5b5) = V(MQ7,1,2),
Rx(a′6b6) = V(MQ7,1,2),
Rx(a′7b7) = V(MQ7,1,2).

For 1 ≤ j ≤ 7 |Rx(a ja′j+1)| = 13 and |Rx(a ja j+1)| ≤ |Rx(e)|, where Rx(e) are the other RLN sets
of MQ7,1,2). Then there exists an upper LRF η : V(MQ7,1,2) → [0, 1] and it is defined as η(y) =
1
13 for each y ∈ V(MQ7,1,2). In order to show that η(y) is a minimal LRF, we define another LRF
η(y)′ : V(MQ7,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which shows that η′ is not

a LRF of MQ7,1,2 hence dimLF ≤
21∑
1

1
12 = 7

12 . In the same context,for 1 ≤ j ≤ 7 it is clear that

|Rx(a ja j+1)| = 21 and |Rx(a ja j+1)| ≥ |Rx(e)|, where Rx(e) are the other RLN sets ofMQ7,1,2). Then there
exists a maximal LLRF η : V(MQ7,1,2) → [0, 1] and it is defined as η(y) = 1

21 for each y ∈ V(MQ7,1,2)
hence dimLF =

∑21
1

1
21 = 1. SinceMQ7,1,2) is non-bipartite network so its lower bound must be greater

then 1. Consequently,

1 < dimLF(MQ7,1,2) ≤ 7
12 .

Case 2. For 1 ≤ j ≤ z from Lemma 5.7 it is clear that |Rx(a ja′j)| =
2

3z+6 and |Rx(a ja′j)| ≤ |Rx(e)|, where
Rx(e) are the other RLN sets ofMQz,1,2). Then there exits an upper LRF η : V(MQz,1,2)→ [0, 1] and it
is defined as η(y) = 2

3n+6 for each y ∈ V(MQz,1,2). In order to show that η is a minimal LRF ofMQz,1,2),
we define another LRF η′ : V(MQz,1,2) → [0, 1] such that |η′(y)| < |η(y)| then η(Rx(e)) < 1 which

shows that η′ is not a LRF ofMQz,1,2) hence by Lemma X dimLF ≤
3z∑
j=1

2
3z+3 = 2z

z+1 . In the same context

for 1 ≤ j ≤ z it is clear from Lemma 5.7 that |Rx(a′jb j)| = 3z and |Rx(b jb j+1)| ≥ |Rx(e)|,where Rx(e)
are the other RLN sets of MQz,1,2. Then there exists a maximal lower LRF η : V(MQz,1,2) → [0, 1]
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and it is defined as η(y) = 1
3z for each y ∈ V(MQz,1,2). Therefore, by Lemma Y dimLF

3z∑
j=1

1
3z = 1. Since

MQz,1,2 is a non-bipartite network so its lower bound of LFMD must be greater then 1. Consequently,

1 < dimLF(MQz,1,2) ≤ 2z
z+1 .

�

6. Conclusions

In this paper, we have computed the local fractional metric dimension of generalized modified
prism networks (MPz,1,2,MQz,1,2) in the form of lower and upper bounds. The lower bounds of all the
modified prism networksMQz,1,2 is strictly greater than 1 in all cases. Moreover, all of these modified
prism networks remain bounded when z→ ∞ as shown in Table 9.

Table 9. Limiting values of LFMDs of modified prism networks.

z � LFMDs Limiting LFMDs as z→ ∞ Comment
1(mod4) z

z−1 ≤ dimLF(MPz,1,2) ≤ 2z
z−1 1 < dimLF(MPz,1,2) ≤ 2 Bounded

3(mod4) z
z−1 ≤ dimLF(MPz,1,2) ≤ 2z

z+1 1 < dimLF(MPz,1,2) ≤ 2 Bounded
0(mod4) z

z−2 ≤ dimLF(MPz,1,2) ≤ 2 1 < dimLF(MPz,1,2) ≤ 2 Bounded
2(mod4) z

z−2 ≤ dimLF(MPz,1,2) ≤ 2z
z+2 1 < dimLF(MPz,1,2) ≤ 2 Bounded

2(mod4) 1 < dimLF(MQz,1,2) ≤ 2z
z+2 1 < dimLF(MQz,1,2) ≤ 2 Bounded

0(mod4) 1 < dimLF(MQz,1,2) ≤ 2 1 < dimLF(MQz,1,2) ≤ 2 Bounded
1(mod4) 1 < dimLF(MQz,1,2) ≤ 2z

z−1 1 < dimLF(MQz,1,2) ≤ 2 Bounded
3(mod4) 1 < dimLF(MQz,1,2) ≤ 2z

z+2 1 < dimLF(MQz,1,2) ≤ 2 Bounded
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