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Abstract: Multiple attribute decision-making concerns with production significant in our everyday 
life. To resolve the problems that decision makers might feel uncertain to choose the suitable 
assessment values among several conceivable ideals in the procedure. Fuzzy model, and its extensions 
are extensively applied to MADM problems. In this study, we proposed an innovative Schweizer-Sklar 
t-norm and t-conorm operation of FFNs, Fermatean fuzzy Schweizer-Sklar operators. They were used 
as a framework for the development of an MCDM method, which was illustrated by an example to 
demonstrate its effectiveness and applicability. Finally, a complete limitation study, rational 
examination, and comparative analysis of the presented approaches has been exhibited, we originate 
that our technique is superior in offering DMs a better decision-making choice and reducing the 
restrictions on stating individual partialities. 

Keywords: decision making; Schweizer-Sklar t-norm and t-conorm; aggregation operators; 
Fermatean fuzzy number; MADM 
Mathematics Subject Classification: 03B52, 47S40 
 



10836 

AIMS Mathematics  Volume 8, Issue 5, 10835–10863. 

List of abbreviations 

Abbreviations Name 
MADM Multiple Attributive decision making 
FFN Fermatean fuzzy number 
DMs Decision matrixes 
SSTT Schweizer-Sklar t-norm and t-conorm 
FF Fermatean fuzzy 
IFS Intuitionistic fuzzy set 
BT Blockchain technology 
MCDM Multiple criteria decision making 
ICT information communications technology 
FFSSTWA Fermatean fuzzy Schweizer-Sklar t-norm weighted average 
FFSSTOWA Fermatean fuzzy Schweizer-Sklar t-norm ordered weighted average 
FFSSTHWA Fermatean fuzzy Schweizer-Sklar t-norm hybrid weighted average 
FFSSTWG Fermatean fuzzy Schweizer-Sklar t-norm weighted geometric 
FFSSTOWG Fermatean fuzzy Schweizer-Sklar t-norm ordered weighted geometric 
FFSSTHWG Fermatean fuzzy Schweizer-Sklar t-norm hybrid weighted geometric 
AHP Analytic hierarchy process  

1. Introduction 

The uncertainty and complexity of decision-making information have an impact on decision-
making results. To describe decision-making information more accurately and truly, Zadeh [10] 
introduced fuzzy set theory. One of the most successful and promising adaptations of the Zadeh notion 
is the intuitionistic fuzzy set (IFS) [1] theory. Colak et al. [2] exhibited the criteria and sub-criteria for 
performance assessment of Blockchain Technology (BT) in supply chain management. The weights of 
main and sub-criteria have been attained through HF-AHP method, and a categorized MCDM problem 
that comprises of 5 main and 17 sub-criteria has been established and the alternative segments have 
been analyzed. A decision model for selecting the finest blockchain platform has been exhibited by 
Farshidi et al. [3]. The stated model has been assessed with three case studies of real problems. 
Cognitive function methods based on FST and Decision-Making Trail and Evaluating Laboratory 
(DEMATEL), MCDM methodology has been introduced by Karaşan et al. [4]. 

For instance, the depositor wishes an agreement to choose the most efficient enterprise according 
to avert asset risk than secure the highest payback, yet the organization desires in imitation of assessing 
its automation degree before improving it. Usually, whole its things to do, need conformity and remain 
evaluated along respect in conformity with several attributes, as are additionally acknowledged as 
MADM issues yet are entirely frequent between our daily life. MADM is a condition confronted when 
persons together brand an excellent from the replacements with deference to a usual attribute. MADM 
difficulties inhabit vital situations in the arena of culture decision making. For sample, the depositor 
desires to choose the optimum business to avoid venture danger and gain the supreme reappearance, 
and the innovativeness. MADM problems have conventional countless considerations in the historical 
few decades. The MCDM techniques are represented in Figure 1. 
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Figure 1. MCDM technique. 

Lin et al. [5] presented reviewed blockchain-based theories connected with ICT-based technology. 
Tang et al. [7] presented assessment statistics and the ranking results of public blockchains. 

A generic class of intuitionistic and Pythagorean sets is known as q-rung Orthopair fuzzy sets 
which was suggested by Yager [8]. Orthopair fuzzy subsets are such that the degree of support for 
membership in the fuzzy set and the degree of support against membership are indicated by pairs of 
values from the unit interval in the membership grades. We noticed that the q-rung Orthopair fuzzy 
sets where the qth power of the support for and qth power of the support against are sum together and 
bonded by one. We observe that when q rises, the range of acceptable Orthopair expands, giving the 
user greater latitude in expressing their opinion regarding membership grade. The key properties and 
features of the blockchain were provided by Yaqoob et al. [9]. We go over the top benefits of 
implementing blockchain technology as well as potential for the healthcare sector. Zhang et al. [11] 
suggested a cyber security paradigm with human-in-the-loop intelligence based on the limitations and 
challenges. Zhou et al. [12] presented a new PF-VIKOR method considering the DM's choice for risk, 
a new way to estimate the distance that is presented in detail, and a difficulty with choosing the best 
blockchain technology solution.  

Senapati et al. [13] developed the Fermatean fuzzy TOPSIS method to address the problem of 
multiple criteria decision-making. The approach for the MCDM issue considering new operators under 
the Fermatean fuzzy condition was provided by Senapati et al. [14]. The Fermatean fuzzy weighted 
product model was presented by Senapati et al. [15] to address the multi-criteria decision-making issue. 
Type-2 fuzzy sets were presented by Own [16], as well as the relationship between type-2 fuzzy sets 
and intuitionistic fuzzy sets. Mondal et al. [17] developed the notion of the tangent similarity measure 
of intuitionistic fuzzy sets. 

Deng et al. [18] introduced the matters in the outranking relative secret into three diverse areas 
by a clustering technique. Wang et al. [19] presented uniqueness of the essential fixings for the regret 
philosophy of the regret-rejoice function and hesitant fuzzy environments. Deng et al. [20] introduced 
the renovate the multi-scale assessment data into an interval fuzzy number by applying a linguistic 
term set. Zhan et al. [21] introduced the Triple interactive executive with hesitant fuzzy data. Gai et al. [22] 
presented dependable capitals to facilitate the attainment of cluster consensus. An approach based on 



10838 

AIMS Mathematics  Volume 8, Issue 5, 10835–10863. 

large-scale group decision making (LSGDM) and online reviews is proposed by Feixia Ji et al. [23] to 
assess user satisfaction with shared living. Wu et al. [24] presented an optimization model built to 
minimize the total adjustment cost of reaching consensus by determining the personalized feedback 
adoption coefficient based on individuals’ consensus levels. This method reflects both the subjective 
assessments of the constant standards and the unique risk perspectives about innovation. 

Different variations of the Fermatean fuzzy set were introduced by Akram and other scholars, we 
summarized these as follows. Akram et al. [25] introduced the Fermatean fuzzy soft expert knowledge. 
Akram et al. [26] introduction complex Fermatean fuzzy N-soft sets. Akram et al [27] introduced the 
objective functions that should be maximized. Akram et al. [28] developed a novel MCGDM analysis 
by fusing soft expert sets with m-polar fuzzy sets, he also looked into their structural characteristics, 
as well as the subset, complement, intersection, union, and OR and AND operators. Alcantud et al. [29] 
proposed a novel theory for the aggregation of N-soft sets, initial scores of alternatives, determined by 
multi-agent, multinary evaluations. Akram et al. [30] presented 2TLCq-RPF aggregation operators, 
including 2TLCq-RPF weighted averaging/geometric operators, sophisticated aggregation operators 
based on the Hamacher operator key characteristics of the new operators, and multi-attribute decision 
making strategy for problems posed in the 2TLCq-RPFS setting. The algebraic and Einstein operations 
are extended by the Hamacher operation. The technique based on the Combined Compromise Solution 
(COCOSO) with Criteria Importance was developed by Akram et al. [31] by combining 2-tuple 
linguistic Fermatean fuzzy (2TLFF) numbers and the Hamacher operation. Issues with multiple 
attribute group decision-making (MAGDM) in a 2TLFF context can be managed by Criteria 
Importance Through inter-criteria correlation (CRITIC). Different extensions of the fuzzy set and their 
interrelationship have been described in Figure 2. 

 

Figure 2. Different extensions of the fuzzy set and their interrelationship have been 
exhibited with the help of flowchart. 

In accordance with the available literature and magnificent structure of innovation, we define the 
standard criteria to comprehensively grade the blockchain skill beneficiaries’ performance concerning 
the reopen allowance for chief circles. We define the Fermatean fuzzy Schweizer-Sklar Operators, 
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which can inarticulacy and hesitations in verdicts due to deficient postulation and sharing related, to 
gain the criterion weights with FF statistics. We use the Fermatean fuzzy Schweizer-Sklar Operators, 
determining the inclusive authority ranking for each pretender, and active the entrants in dropping 
direction sighted the DM's threat need regarding a blockchain by decisive the reduction subject of the 
affronted.  

The standards and techniques for evaluating blockchain capabilities, phases, crops, and suppliers 
are briefly evaluated. This establishes the framework for developing the standards for selecting the 
best blockchain knowledge provider for primary sets of financial organizations to link blockchain 
expertise throughout the process of cross-border transmittal. 

The goals and motivations of this paper are: 
(1) To endorse the notion of FFS. 
(2) Investigate the structure of FFSSTWA operators. 
(3) Suggest an SSTT operation for FF components. 
(4) To suggest an innovative technique for MADM founded on the planned operators. Congruently, 

the offerings of this paper are: 
i. We presented an intimate of data aggregation operators by joining the FFS and SST operators 

founded on SSTT functioning rules. 
ii. We provide a universal background of the proposed technique to MADM complications.  

iii. Offered process to innovativeness statistics and assessment. 
The break of this paper is systematized as follows: Section 2, discussed FFN and operational laws. 

Section 3 remembrances approximately plain designs and provides the SSTT operational rules 
established on FFS. Section 4 proposes a series of FFN aggregation operators. Section 5 presents an 
innovative method to MADM. Section 6 delivers a mathematical example to authenticate the 
rationality and qualities of the proposed viewpoint. Section 7, we discuss in the conclusion. Finally, 
interdependency of the different sections of the paper has been exhibited in Figure 9. 

2. Preliminaries 

We recall some basic concepts of Fuzzy set in this section, to understand the paper. Zadeh 
introduced the fuzzy set [10]. We recall this as follows. 

Definition 2.1. [10] Let us consider that H  and by a fuzzy set  y,
,

:

y

y H


    

  
  y  is a 

mapping from H  to [0 ,1]  characterize membership task of an component y  in H.  

FFN and operational laws 

Fermatean Fuzzy Numbers (FFN) and their operational laws, score and accuracy functions were 
defined by Senapati et al. [14], we recall it’s as follows. 

Definition 2.1.1. [14] The fixed set E  and the FFN F  is defined in 

(y),

(y) ,

:

F

FF

y E



 

   
  

 anywhere 

(y)F  and (y)F  characterize the MED and NOMED, and (y) [0,1]F  , (y) [0,1]F   and 
3 30 (y) (y) 1.F F     The grade of indeterminacy is defined as 
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3 3 3 33(y) ( (y) (y) (y) (y) ) .F F F F F        The FFN is indicated as , .F FF       

Operational laws of FFNs are described as follows: 

Definition 2.1.2. [14] Let  1 1 1,a    and  2 2 2,a    be two FFNs, 0  , then. 

3 3 3 33
1 2 1 2 1 2 1 2( ), ;a a             

3 3 3 33
1 2 1 2 1 2 1 2, ( ) ;a a             

33
1 1 11 (1 ) , , ;a           

33
1 1 1, 1 (1 ) .a         

Definition 2.1.3. [14] Let  , ,   be the FFNs, then the score is  3 3 .     

Definition 2.1.4. [14] Let  , ,   be the FFNs, then the accuracy is  3 3 .     

3. Schweizer-Sklar t-norm and t-conorm 

The descriptions of Schweizer-Sklar t-norm and t-conorm are offered as follows: 

1

1

( , ) ( 1)

( , ) 1 ((1 ) (1 ) 1)

T f e f e

T x y f e





 

 

  

     
 

where 0, , [0,1]f e    . Additionally, when 0,   we have  

( , )T f e fe  and ( , ) .T f e f e fe    

They are the statistical t-norm and statistical t-conorm. 

FFN operational laws founded on Schweizer-Sklar Operators 

Definition 3.1.1. Let 1 1 1[ , ]a    and 2 2 2[ , ]a    be two FFNs based on SST operator and 0  , 

then, 

1

1

3 33
1 2

1 2

1 2

1 ((1 ( )) (1 ( )) 1) ,
;

( 1)
a a

 

 





 

 

       
   

 

1

1

1 2

1 2
3 33
1 2

( 1) ,
;

1 ((1 ( )) (1 ( )) 1)
a a

 

 





 

 

  
  
      

 

1

1

33
1

1

1

1 ( (1 ( )) ( 1)) ,
;

( ( 1))

n n
na

n n













     
   
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1

1

1

1
33
1

( ( 1)) ,
.

1 ( (1 ( )) ( 1))

n
n n

a
n n













  
 
     

 

4. FFN aggregation operators 

In this section, FFSSTWA, FFSSTOWA, FFSSTHWA, FFSSTWG, FFSSTOWG and 
FFSSTHWG operators are defined and graphically represented their interrelationship, see Figure 3. 

 

Figure 3. Different novel operators (FFSSTWA, FFSSTOWA, FFSSTHWA, FFSSTWG, 
FFSSTOWG and FFSSTHWG) based on Schweizer-Sklar operators, and their 
relationships has been exhibited. 

4.1. FFSSTWA operator 

Definition 4.1.1. The collection of FFNs are [ , ]jc    and the weight vector is 1 2( , ,..., )T
ne e e e  

with [0,1]je   and 
1

1.
n

j
j

e

   Then  1 2

1
FFSST , ,...,

n

n j j
j

c c c e c


   

is assumed to be a FFSSTWA operator. 

Theorem 4.1.2. The collection of FFNs  [ , ]jg    and the weight vector is 1 2( , ,..., )T
n     

with [0,1]j   and 
1

1.
n

j
j



   Then it will be a FFSSTWA operator and  

 

1

1

33

1

1 2

1

1 ( (1 ( )) ( 1)) ,
FFSSTWA , ,..., .

( ( 1))

n

j
j

n
n

j
j

g g g









  

  





 
     

 
     
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Proof. By induction on n, we will continue. If n is 1 then 

1 1
1 1 1 1

1 1
33

1 1 1 1
1 1

1 ( (1 ( )) ( 1)) , ( ( 1))
j j

g         
 

 
         
 

 

1 1
2 1 2 2

2 2
33

2 2 2 2
1 1

1 ( (1 ( )) ( 1)) , ( ( 1))
j j

g         
 

 
         
 

 

1 1
1 1 1 1

1 1
33

1 1 2 2 1 1
1 1

1 ( (1 ( )) ( 1)) , ( ( 1))
j j

g g          
 

 
           

 
 

1 1
2 2 2 2

2 2
33
2 2

1 1
1 ( (1 ( )) ( 1)) , ( ( 1))

j j

       
 

 
        

 
. 

Let the statement is true for n k  

FFSSTWA  1 2, ,..., na a a  1 1
33

1 1
1 ( (1 ( )) ( 1)) , ( ( 1))

k k

j j
j j

       
 

 
        

 
. 

Now for 1n k    

FFSSTWA  1 2, ,..., na a a  1 11 1
33

1
1 1

1 ( (1 ( )) ( 1)) , ( ( 1))
k k

j
j j

       
 

 

 
        

 
. 

The following theorems' proofs are simple; therefore, we skip them. 

Theorem 4.1.3. (Idempotency): If 


[ , ]Y    for all 1, 2,3, ..., ,h m  then  

FFSSTWA( , , , ..., ) .Y Y Y Y Y  

Theorem 4.1.4. (Commutativity): If 1 2(d , ,..., )nd d
  

 is any permutation of 1 2(d , ,..., )nd d , then 

FFSSTWA 1 2(d , ,..., )nd d
  

  FFSSTWA 1 2(d , ,..., ).nd d  

Theorem 4.1.5. (Boundedness): If 1 2 1 2min(d , ,..., ), max(d , ,..., ),n nY d d Y d d    then 

1 2FFSSTWA(d , ,..., ) .nY d d Y    

4.2. FFSSTOWA operator 

Definition 4.2.1. The gathering of FFNs are [ , ]kc    and the weight vector is 1 2( , ,..., )T
mh h h h  

with [0,1]kh   and 
1

1.
m

k
k

h

  The  

 1 2
1

FFSST , ,...,
m

m k k
k

c c c h c


   

is said to be FFSSTOWA operator. 
The proof of the following theorems is straightforward, and we omit it. 

Theorem 4.2.2. The collection of FFNs are  [ , ]kf    and the weight vector is 1 2( , ,..., )T
n     
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with [0,1]j   and 
1

1.
n

k
k



   Then it will be a FFSSTOWA operator and  

 
1

1

33

1
1 2

1

1 ( (1 ( )) ( 1)) ,
FFSSTOWA , ,..., .

( ( 1))

n

k
k

n
n

k
k

f f f









  

  





 
     

  
     

 

The proof of the following theorems is straightforward, and we omit it. 

Theorem 4.2.3. (Idempotency): If 


[ , ]Y    for all 1, 2,3, ..., ,r m  then  
FFSSTOWA( , , , ..., ) .Y Y Y Y Y  

Theorem 4.2.4. (Commutativity): If 1 2(d , ,..., )nd d
  

 is any permutation of 1 2(d , ,..., )nd d , then 

FFSSTOWA 1 2(d , ,..., )nd d
  

 FFSSTOWA 1 2(d , ,..., )nd d  

Theorem 4.2.5. (Boundedness): If 1 2min(e , ,..., ),nY e e   1 2max(e , ,..., ),nY e e   then  

1 2FFSSTOWA(e , , ..., ) .nY e e Y    

4.3. FFSSTHWA operator 

Definition 4.3.1. The congregation of FFNs are [ , ]jc    and the weight vector is 

1 2( , ,..., )T
ng g g g  with [0,1]jg   and 

1
1.

n

j
j

g

   Then  1 2

1
FFSST , ,...,

n

n j j
j

c c c g c


   

will be a FFSSTHWA operator. 
The proof of the following theorems is straightforward, and we omit it. 
Theorem 4.3.2. The gathering of FFNs are  [ , ]jg    and the weight vector is 1 2(u , ,..., )T

nu u u  

with [0,1]ju   and 
1

1
n

j
j

u

  . Then it is held FFSSTHWA operator and  

 

1

1

33

1

1 2

1

1 ( (1 ( )) ( 1)) ,
FFSSTHWA , ,..., .

( ( 1))

n
u

j
j

n
n

u
j

j

g g g





  

  





 
     

 
     

 

Theorem 4.3.3. (Idempotency): If 


[ , ]O    for all 1, 2,3, ..., ,k n  then FFSSTHWA 
(O, , , ..., ) .O O O O   

Theorem 4.3.4. (Commutativity): If 1 2(e , ,..., )me e
  

 is any permutation of 1 2(e , ,..., ),me e  then 

FFSSTHWA 1 2(e , ,..., )me e
  

FFSSTHWA 1 2(e , ,..., )me e .  

Theorem 4.3.5. (Boundedness): If 1 2min(d , ,..., ),mY d d   1 2max(d , ,..., ),mY d d   then Y    

FFSSTHWA 1 2(d , ,..., )md d  .Y   

4.4. FFSSTWG operator 

Definition 4.4.1. The congregation of FFNs are [ , ]kc    and the weight vector is 
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1 2( , ,..., )T
mf f f f  with [0,1]kf   and 

1
1.

m

k
k

f

   Then  1 2

1
FFSST , ,..., k

m
f

m k
k

c c c c


   

is said FFSSTWG operator. 

Theorem 4.4.2. The collection of FFNs are  [ , ]jd    and the weight vector is 1 2(e , ,..., )T
me e e  

with [0,1]je   and 
1

1.
m

j
j

e

   Then it is held FFSSTWG operator and  

 

1

1

1

1 2
33

1
1

( ( 1)) ,

FFSSTWG , ,..., .

1 ( (1 ( )) ( 1))

e

e

m
e
j

j

m m
e

j

d d d

  

  





    
 
       

 

Proof. By induction on m, we will continue. If m is 1 then 

1

1

1

1
1

1 1 1
33

1
1

( ( 1)) ,

1 ( (1 ( )) ( 1))

e

e

e

j

e

j

e d

  

  





    
 
       

 

1

1

2

2
1

2 2 2
33
2

1

( ( 1)) ,

1 ( (1 ( )) ( 1))

e

e

e

j

e

j

e d

  

  





    
 
       

 

1 1

1 1

1 2

1 2
1 1

1 1 2 2 1 2
3 33 3

1 2
1 1

( ( 1)) , ( ( 1)) ,

1 ( (1 ( )) ( 1)) 1 ( (1 ( )) ( 1))

e e

e e

e e

j j

e e

j j

e d e d

     

     

 

 

           
     
                  

. 

Let the statement is true for m k   

FFSSTWG  

1

1

1
1

1 2
33

1
1

( ( 1)) ,

, , ...,

1 ( (1 ( )) ( 1))

e

e

k
e

j

m k
e

j

d d d

  

  





    
 
       

. 

Now for 1m k    

FFSSTWG  

1

1

1

1
1

1 2 1
33

1
1

( ( 1)) ,

, , ..., .

1 ( (1 ( )) ( 1))

e

e

k
e

j

m k
e

j

d d d

  

  









    
 
       

 

The proof of the following theorems is straightforward, and we omit it. 
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Theorem 4.4.3 (Idempotency): If 


[ , ]Y    for all 1, 2,3, ..., ,h m  then  
FFSSTWG( , , , ..., ) .Y Y Y Y Y  

Theorem 4.4.4. (Commutativity): If 1 2(d , ,..., )nd d
  

 is some permutation of 1 2(d , , ..., ),nd d  then 

FFSSTWG 1 2(d , ,..., )nd d
  

 FFSSTWG 1 2(d , ,..., )nd d   

Theorem 4.4.5. (Boundedness): If 1 2min(d , ,..., ),nY d d   1 2max(d , ,..., ),nY d d   then 

1 2FFSSTW G (d , , ..., ) .nY d d Y    

4.5. FFSSTOWG operator 

Definition 4.5.1. The collection of FFNs are [ , ]jc    and the weight vector is 1 2( , ,..., )T
ne e e e  

with [0,1]je   and 
1

1.
n

j
j

e

   Then FFSST  1 2

1
, , ..., j

n e
n j

j
c c c c


   is said FFSSTOWG operator. 

The proof of the following theorems is straightforward, and we omit it. 

Theorem 4.5.2. The gathering of FFNs are  [ , ]jd    and the weight vector is 1 2(e , ,..., )T
me e e  

with [0,1]je   and 
1

1.
m

j
j

e

   Then it is held FFSSTOWG operator and  

 

1

1

1

1 2
33

1

( ( 1)) ,

FFSSTOWG , ,..., .

1 ( (1 ( )) ( 1))

e

e

m
e

j

m m
e

j

d d d

  

  





    
 
       

 

Theorem 4.5.3. (Idempotency): If 


[ , ]Y    for all 1, 2, 3, ..., ,h n  then 
FFSSTOWG( , , , ..., ) .Y Y Y Y Y  

Theorem 4.5.4. (Commutativity): If 
1 2(R , , ..., )nR R
  

 is any permutation of 1 2(R , ,..., ),nR R  then 

FFSSTOWG 1 2(R , ,..., )nR R
  

 FFSSTOWG 1 2(R , ,..., ).nR R  

Theorem 4.5.5. (Boundedness): If 1 2min(L , ,..., ),nY L L   1 2max(L , ,..., ),nY L L   then 

1 2FFSSTOWG(L , ,..., ) .nY L L Y    

4.6. FFSSTHWG operator 

Definition 4.6.1. The gathering of FFNs are [ , ]jc    and the weight vector is 1 2( , ,..., )T
ne e e e  

with [0,1]je   and 
1

1.
n

j
j

e

   Then  1 2

1

FFSST , , ..., j

n
e

n j
j

c c c c


  

is said FFSSTHWG operator. 
The proof of the following theorems is straightforward, and we omit it. 
Theorem 4.6.2. The collection of FFNs are  [ , ]jd    and the weight vector is 1 2(e , ,..., )T

ne e e  

with [0,1]je   and 
1

1
n

j
j

e

  . Then it is held FFSSTHWG operator and 
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 

1

1

1

1 2
33

1

( ( 1)) ,

FFSSTHWG , ,..., .

1 ( (1 ( )) ( 1))

e

e

n
e

j

n n
e

j

d d d

  

  





    
 
       

 

Theorem 4.6.3. (Idempotency): If 


[ , ]Y    for all 1, 2, 3, ..., ,h n  then  
FFSSTHWG( , , , ..., ) .Y Y Y Y Y  

Theorem 4.6.4. (Commutativity): If 1 2(d , ,..., )nd d
  

 is any permutation of 1 2(d , ,..., )nd d , then.  

1 2 1 2FFSSTHWG(d , ,..., ) FFSSTHWG(d , ,..., ).n nd d d d
  

  

Theorem 4.6.5. (Boundedness): If 1 2 1 2min(d , ,..., ), max(d , ,..., ),n nY d d Y d d    then 

1 2FFSSTHWG(d , ,..., ) .nY d d Y    

5. FF-AHP for innovativeness procedure selection 

In this section we discuss the challenges of creative service collecting for major tiers or fiscal 
organizations by utilising a novel combination method that joins AHP with SST using FF data. To 
evaluate the work and the individual aspects of the innovation, a system of hierarchical evaluation 
criteria will be set up, able to balance strong presentation with obvious risks. The AHP is then applied 
to the FF scenery to quickly address the DMs' queries regarding the pairwise assessment of the relevant 
criteria, and to categorise the reliable criterion weights of the innovativeness dealers. The SST scheme 
is then added to the FF scenario to raise the suppliers' overall quality ratings while seeing the DMs' 
risk distaste concerning innovation. The position effects will quickly assess both the criteria's impartial 
values as well as the DMs' individual risk assurance through the blockchain. As a result, the proposed 
FF-AHP-SST technique address more effectively the problem of innovativeness worker collecting by 
considering the material topographies of innovativeness as well as the logical and emotional 
performance of DMs. Further graphically stepwise algorithm of proposed aggregation operators has 
been represented in Figure 4. 

 

Figure 4. Stepwise algorithm of proposed aggregation operators, represented through flowchart. 
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5.1. Description of the innovativeness group problem 

Innovativeness assortment, as a distinguishing MCDM problems, is done by gathering the 
decision mediums. Let 1 2{ , ,..., }nA A A A  signify sure dormant blockchain ability workers 

1 2{ , , ..., }nPS PS PS PS  denote weighty evaluative criteria transported by frequent specialists 

1 2{ , ,..., },nDM DM DM DM  and the conforming vigorous of experts is signified by 

1 2( , ,..., )T
n      satisfying the situations 

1

1.
n

j
j

   Furthermore, the vigorous of the evaluative 

criteria is characterized by 1 2( , , , ) ,T
nW W W W   consultation the ensuing environments: 

1

1.
n

j
j

W


  

Each constituent in the decision medium means the appropriate aspirant's evaluative valuation on a 
persuaded principle from the DM. 

5.2. MCDM system on FFNs 

Case 1. 
Step 1: Designate the FF decision matrix. 

Step 2: Designate the FFSSTHWA operator and  1 2, ,..., .n     

1

1

33
1

1

1 2

1
1

1 ( (1 ( )) ( 1)) ,
FFSSTHWA( , ,..., )

( ( 1))

n

j

n
n

j

a a a









  

  





 
     

 
     

. 

Step 3: Designate the FFSSTHWA operator and  1 2, ,..., .n     

1

1

33
1

1

1 2

1
1

1 ( (1 ( )) ( 1)) ,
FFSSTHWA( , ,..., )

( ( 1))

n

j

n
n

j

a a a









  

  





 
     

 
     

. 

Step 4: Find the level. 
Case 2. 
Step 1: Describe the FF decision matrix. 

Step 2: Describe the FFSSTHWG operator and  1 2, ,..., .n     

1

1

1
1

1 2
33

1
1

( ( 1)) ,

FFSSTHWG( , ,..., )

1 ( (1 ( )) ( 1))

n

j

n n

j

a a a

  

  













    
 
       

. 
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Step 3: Describe the FFSSTHWG operator and  1 2, ,..., .n     

1

1

1
1

1 2
33

1
1

( ( 1)) ,

FFSSTHWG( , ,..., )

1 ( (1 ( )) ( 1))

n

j

n n

j

a a a

  

  













    
 
       

. 

Step 4: Find the rank. 

5.3. FF-AHP case history 

TE-FOOD is a community permissioned nourishment traceability system that enables all 
supply chain participants blockchain-based farm-to-table and customer trace of the food’s data. 
The Food Chain (TE-FOOD’s blockchain) is a community permissioned blockchain that lets 
supply chain performers and patrons uphold chief bulges to disperse traceability data. Customers 
of TE-FOOD use the flexibility to improve comprehensive perspectives into the stock restraint of 
food manufacture. TFD is symbolic of TE-ERC FOOD, which is classically abandoned on the 
wraithlike phase. 

The situation, to provide visibility in the food stream shackle by guiding the products through the 
entire spring chain (farm, computer or abattoir, supplier, shop) and offering clients, supply chain 
businesses, and management activities with tools to study the history and perfection of food. The TE-
FOOD aims to enhance customer confidence and communication, acquire better supply chain data to 
restore operating effectiveness, abide by spread guidelines, protect their products from counterfeiting, 
and carry out earlier invention memories. 

The TE-Food system consists of diverse arenas: 
Understanding tools it includes safety closures, tag stickers, 1D/2D barcodes, RFID ear stickers, 

and tag labels. Traceability management includes a mobile B2B (Business-to-Business) app, a web 
app, a dominating system, outer interfaces, and journalistic tools. Skill and client tools include B2C 
(Business-to-Consumer), new yield legacy mobile apps, web apps, and trade side nutrition ancient 
numerical signage tools. Solutions offered by national livestock organisations: It includes plans for 
managing and implementing cattle. 

Gears for farm organisation: These tools are based on the category-specific (Inoculation, 
nourishing, composts, vegetable defence harvests, etc.). A Scam organisation arrangement, 
nourishment complaint device paraphernalia, and meat excellence graphic examination scheme are 
some of the equipment used in food care. The plan uses several documentation resources, including 
paper-based marker labels with QR codes, flexible terminations with QR codes, and malleable 
credentialing labels with RFID, to categorise the watched bodily fluids (crops, chairs, etc.) 

It fulfils many customers’ needs for traceability, including movable apps used by B2B and clients 
to access double documentation capitals and appeal/arrival statistics. For users who do not want to use 
a mobile app to see the creation history, there is a web app. Exposed border for supply chain businesses 
that now use practise software to wrest origination's information's-FOOD propositions dualistic 
implementation representations, distant or official, and IoT API for food industries that permit to 
organisation statistics conservative from the strategies. 
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TE-FOOD being focused on food production yields only solutions for the agricultural sector. Only 
the trackability solution provides multiple B2B (Business-to-Business), B2C (Business-to-Consumer), and 
B2A (Business-to-Authorities) capabilities, supporting businesses, customers, and institutions. 

Customer trust is shaped since they can trace the origin of the food creation while accounting for 
all the distributions the creation received. 

Good trackability and sensors allow for the early isolation of contaminated food production before 
it spreads to stores, thereby reducing the number of foodborne illnesses. 

Controlling entities have realistic perspectives on the food industry that support the application 
of food care regulations. 

One of the TE-FOOD restrictions is the TFD symbolising the relatively slow deal/second (15 
TPS) rate of delicate net earnings. Additionally, TE-FOOD must demonstrate an unintentional and 
direct rivalry with other rival companies like Ambrosius, WABI, MOD, and WTC. Additionally, TE-
FOOD has a significant customer base in Vietnam and Republic of Hungary, and it is important to 
establish contacts in the world-wide market. 

5.4. Numerical application of FF SST technique 

The operation and growth of innovativeness are devoted from data building in the data stage. 
Innovative information building points to recover the organization break even with the complete trade 
wrapped up and information expertise. Activities can recoup the competence of their operations and 
organization through information director, planning by automatic and brainy progressed equipment 
and computer program device and administrations. Further by establishing a work organize checking 
framework database on all sorts of information, organization plans, to come about the commitment of 
modern innovativeness organization. In public, it is fundamental to make an automation even for 
calculation as it is one most essential tool for any organisation in this modern era. In uncertainty, DMs 
must provide their evaluations for the innovativeness with devotion to set up a right direction; in this 
way, the estimation movement can be seen as an agent MADM risky. Let a corporation is scheduled 
to support its four companies to expand their automation structure equally. The corporation will request 
four experts to make material for assessment of the four companies. ( 1,2,3,4)iPS i   with reverence 

to four qualities ( 1,2,3,4).iGBIU i   As the availability of data and the feasibility of the review, four 

attributes are ultimately chosen: GBIU 1 (IT attention degree), GBIU 2  (IT reserve attention degree), 

GBIU 3  (IT influence degree), and GBIU 4  (amount of speculation for automation). The weight 

vector of four experts is (0.2,0.3,0.4,0.1) .Tw   

Attractive into clarifying the effort of real-world states and the suitability of data, the ultimate 
decision maker requires DMs to utilize Fermatean fuzzy basics to direct their appraisal data. So, the 
decision matrices measured by DMs are observable in Tables 1 and 2. 

The assessment originates that the overweight of the four are wholly reported confidential after 
four cross units. By performing the four steps algorithm, the final ranking fallouts of FFSSTWA 
operators of Cases 1 and 2 has been denoted in Figures 5 and 6 individually. 
Case 1. 
Step 1: Define the FF decision matrix. The FF decision matrix Table 1 is as below. 
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Table 1. Fermatean fuzzy decision matrix. 

 
1GBIU  2GBIU  3GBIU  4GBIU  

1P S  
0.11,

0.13

 
 
 

 0.15,

0.17

 
 
 

 0 .24,

0 .28

 
 
 

 0.11,

0.31

 
 
 

 

2PS  0 .24,

0 .28

 
 
 

 0.11,

0.13

 
 
 

 0.24,

0.28

 
 
 

 0.11,

0.13

 
 
 

 

3PS  
0.11,

0.13

 
 
 

 0.5,

0.9

 
 
 

 0.11,

0.13

 
 
 

 0.105,

0.109

 
 
 

 

4P S  0.5,

0.9

 
 
 

 0.11,

0.13

 
 
 

 0.44,

0.55

 
 
 

 0 .11,

0 .13

 
 
 

 

The FF decision matrix Table 2 is as below. 

Table 2. Fermatean fuzzy decision matrix. 

 
1GBIU  2GBIU  3GBIU  

4GBIU  

1PS  0 .0 0 1,

0 .0 0 3

 
 
 

 0 .0 2 ,

0 .0 3

 
 
 

 0 .0 0 2 4,

0 .0 0 2 8

 
 
 

 0 .3 ,

0 .5

 
 
 

 

2PS  
0.5,

0.8

 
 
 

 0 .1 1,

0 .1 3

 
 
 

 0.3,

0.5

 
 
 

 0 .1 1,

0 .1 3

 
 
 

 

3PS  
0 .1 1,

0 .1 3

 
 
 

 0.3,

0.5

 
 
 

 0 .1 1,

0 .1 3

 
 
 

 0.2,

0.7

 
 
 

 

4PS  0.3,

0.5

 
 
 

 0.5,

0.8

 
 
 

 0 .05,

0 .08

 
 
 

 0 .01,

0 .03

 
 
 

 

Step 2: Describe the FFSSTWA operator and  0.23,0.24,0.25,0.28 .   

FFSSTWA operator Table 3. 

Table 3. FFSSTWA operator. 

 
1GBIU  2GBIU  3GBIU  4GBIU  

1PS  
0 .1 3 4 1,

0 .3 0 8 1

 
 
 

 0.1022,

0.5012

 
 
 

 0.0329,

0.4211

 
 
 

 0.2211,

0.4513

 
 
 

 

2PS  
0.1223,

0 .1345

 
 
 

 0 .8 7 2 1,

0 .9 8 1 2

 
 
 

 0.4 801,

0 .6 801

 
 
 

 0 .4 5 1 2 ,

0 .5 4 1 1

 
 
 

 

3PS  
0.1856,

0 .2321

 
 
 

 0 .6 0 2 1,

0 .7 6 3 4

 
 
 

 0 .6192,

0 .6734

 
 
 

 0.6013,

0 .5691

 
 
 

 

4PS  
0.0131,

0 .0345

 
 
 

 0 .3336,

0 .5 678

 
 
 

 0.1913,

0 .5678

 
 
 

 0 .6 1 8 1,

0 .8 5 3 4

 
 
 
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Step 3: Designate the FFSSTWA operator and  0.23,0.24,0.25,0.28 .   

FFSSTWA operator Table 4. 

Table 4. FFSSTWA operator. 

PS1   0.1041, 0.3081  

PS2   0.1623,0.1345  

PS3   0.1056, 0.2321  

PS4   0.2131, 0.0345  

Step 4: Determine the score values. 

1 2 3 40.0185, 0.4734, 0.2329, 0.4843.Z Z Z Z      

 

Figure 5. Graphically representation of ranking result FFSSTWA operator. 

Case 2. 
Step 1: The FF decision matrix. The FF decision matrix Table 5 is as below. 

Table 5. Fermatean fuzzy decision matrix. 

 
1GBIU  2GBIU  3GBIU  4GBIU  

1PS  
0 .11,

0 .13

 
 
 

 0.05,

0.07

 
 
 

 0.1,

0.5

 
 
 

 0.1,

0.6

 
 
 

 

2PS  
0.24,

0.28

 
 
 

 0.1,

0.6

 
 
 

 0 .11,

0 .13

 
 
 

 0.11,

0.13

 
 
 

 

3PS  
0.11,

0.13

 
 
 

 0.5,

0.9

 
 
 

 0.1,

0.6

 
 
 

 0.01,

0.03

 
 
 

 

4PS  
0.015,

0.018

 
 
 

 0.11,

0 .13

 
 
 

 0.1,

0.7

 
 
 

 0.11,

0.13

 
 
 
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FF decision matrix. The FF decision matrix Table 6 is as below. 

Table 6. Fermatean fuzzy decision matrix. 

 
1GBIU  2GBIU  3GBIU  4GBIU  

1PS  0.0201,

0.0203

 
 
 

 
0.202,

0.203

 
 
 

 
0.1324,

0.2528

 
 
 

 
0.0011,

0.0051

 
 
 

 

2PS  0.0011,

0.0051

 
 
 

 
0.1324,

0.2528

 
 
 

 
0.3,

0.5

 
 
 

 
0.01,

0.03

 
 
 

 

3PS  0.11,

0.13

 
 
 

 
0.0011,

0.0051

 
 
 

 
0.11,

0.51

 
 
 

 
0.1324,

0.2528

 
 
 

 

4PS  0.1324,

0.2528

 
 
 

 
0.11,

0.51

 
 
 

 
0.0011,

0.0051

 
 
 

 
0.01,

0.03

 
 
 

 

Step 2: Designate the FFSSTWG operator and  0.23,0.24,0.25,0.28 .   

FFSSTWG operator Table 7. 

Table 7. FFSSTWG operator. 

 
1GBIU  2GBIU  3GBIU  4GBIU  

1PS  0.1041,

0.3981

 
 
 

 
0.1122,

0.5312

 
 
 

 
0.1329,

0.4201

 
 
 

 
0.7811,

0.4613

 
 
 

 

2PS  0.1003,

0.8145

 
 
 

 
0.8721,

0.1812

 
 
 

 
0.1801,

0.3801

 
 
 

 
0.1512,

0.3411

 
 
 

 

3PS  0.4856,

0.6321

 
 
 

 
0.5021,

0.8634

 
 
 

 
0.1192,

0.8734

 
 
 

 
0.9013,

0.0691

 
 
 

 

4PS  0.3131,

0.7345

 
 
 

 
0.3006,

0.5008

 
 
 

 
0.1093,

0.5988

 
 
 

 
0.6091,

0.8094

 
 
 

 

Step 3: The FFSSTWG operator and  0.23,0.24,0.25,0.28 .   

FFSSTWG operator Table 8. 
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Table 8. FFSSTWG operator. 

PS1   0.0341,0.3481  

PS2   0.7223,0.4345  

PS3   0.9856,0.3321  

4PS   0.5131,0.1346  

Step 4: Determine the score value. 
1 2 3 40.0102, 0.4904, 0.2229, 0.7888.Z Z Z Z      

 

Figure 6. Graphically representation of ranking result FFSSTWG operator. 

6. Comparison technique with existing method 

Sketches are used to compare the optional plan to another plan that is inferior based on IFSs [1] 
and FFWG statistics [14] to support and conventionally optimistic feasibility. Other strategies are odd 
applications of our technique strategy, which was developed on FFN to the same description 
circumstance. Ranking result of the optimal solution of the existing technique has been represented in 
Figures 7 and 8. 
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Figure 7. Ranking result of the optimal solution of the existing technique. 

 

Figure 8. Ranking result of the optimal solution of the existing technique. 

6.1. IFN with existing technique 

Step 1: IF decision matrix Table 9 in is as below. 
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Table 9. Intuitionistic fuzzy decision matrix. 

 
1GBIU  2GBIU  3GBIU  4GBIU  

1PS  0.01,

0.03

 
 
 

 
0.2,

0.4

 
 
 

 
0.9,

0.11

 
 
 

 
0.11,

0.33

 
 
 

 

2PS  0.12,

0.13

 
 
 

 
0.4,

0.6

 
 
 

 
0.31,

0.33

 
 
 

 
0.112,

0.313

 
 
 

 

3PS  0.11,

0.33

 
 
 

 
0.12,

0.13

 
 
 

 
0.2,

0.4

 
 
 

 
0.554,

0.556

 
 
 

 

4PS  0.3004,

0.3006

 
 
 

 
0.34,

0.36

 
 
 

 
0.12,

0.13

 
 
 

 
0.2,

0.4

 
 
 

 

Step 2: Describe the IFWA operator and the weight (0.1, 0.2, 0.3, 0.4).  In Table 10. 

Table 10. Intuitionistic fuzzy weighted averaging operator. 

1PS   0.4427,0.3145  

2PS   0.4534,0.2756  

3PS   0.2991,0.3653  

4PS   0.2801,0.3843  

Step 3: The score value is 

1 2 3 40.1121, 0.1498, 0.1971, 0.4121.Z ZZ Z     

Step 4: Given the ranking 4 3 2 1Z Z Z Z    and hence 4Z is the best. 

6.2. FF number with existing technique 

Step 1: The FF decision matrix is given in Table 11. 

Table 11. Fermatean Fuzzy decision matrix. 

 
1GBIU  2GBIU  3GBIU  4GBIU  

1PS  0.21,

0.23

 
 
 

 
0.212,

0.214

 
 
 

 
0.209,

0.211

 
 
 

 
0.002,

0.004

 
 
 

 

2PS  0.12,

0.14

 
 
 

 
0.11,

0.13

 
 
 

 
0.3001,

0.3003

 
 
 

 
0.1012,

0.3013

 
 
 

 

3PS  0.11,

0.13

 
 
 

 
0.11,

0.12

 
 
 

 0.1,

0.4

 
 
 

 0.553,

0.554

 
 
 

 

4PS  0.3002,

0.3004

 
 
 

 
0.32,

0.34

 
 
 

 
0.11,

0.13

 
 
 

 0.2,

0.4

 
 
 

 



10856 

AIMS Mathematics  Volume 8, Issue 5, 10835–10863. 

Step 2: The FFWG operator and the weight vector is (0.1, 0.2, 0.3, 0.4).  FFWG operator Table 12. 

Table 12. FFWG operator. 

1PS   0.4145,0.1231  

2PS   0.4111,0.1132  

3PS   0.4353,0.8935  

4PS   0.7231,0.3343  

Step 3: The score function is. 

1 2 3 40.0414, 0.1835, 0.2802, 0.5001.Z Z Z Z      

Step 4: Find the ranking 4 3 2 1Z Z Z Z    and hence 4Z is the best. 

When there are interrelationships including any various criteria: The varied methods can hold this 
formal, see Table 13. 

Table 13. Comparison of different techniques. 

Methods 1 2 3 4 5 
Colak et al. [2] 0.0253  0.2901  0.3008  0.0621  0.3498  
Farshidi et al. [3] 0.0909  0.4056  0.3087  0.4085  0.0095  
Karaşan et al [4] 0.1537  0.1881  0.8601  0.1916  0.0483  
Tang et al. [7] 0.5243  0.3041  0.3007  0.9721  0.6098  

6.3. Merits of the proposed method 

We highlighted some merits of the suggested approach, as follows. 
1) The approach proposed in this paper is related with the group decision-making technique 

grounded on imitation and FFS proposed in (Senapati et al. 2019), and the ranking result by 
the mixture of imitation and FFS is 2 4 3 1      . It is observed that the best structure found 

by the process proposed in this study is the similar as that gained by the group decision-making 
system in (Senapati et al. 2019), that is 2 , but the command of each structure is still changed. 

Since the risk favourites of dissimilar decision-makers are booked into explanation in the 
aggregation technique used in this paper. The consequence of indecision on decision-making 
consequences is counted from the viewpoint of decision-makers, so the decision-making 
consequence is more in streak with the real decision-making condition. 

2) It is more sensible and applied to use the technique suggested in this paper to regulate the 
weight of decision-makers than the lengthy FFS technique used in (Senapati, T and Yager, 
R. R. (2020)). As The masses of decision-makers resolute through the FFs technique is the 
similar for dissimilar qualities, and folks using the method outlined in this paper are 
different for different qualities. In actual decision-making, the different qualities may 
include changed arenas, and correspondingly decision maker is clearly only decent at some 
fields but not altogether in all fields. It is more sensible that decision makers have diverse 
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weights under different attributes. In adding, the existing study consequences use 
resemblance or nearness to control the weight of decision makers, but the resemblance is 
not essentially high underneath great closeness. Consequently, this paper interminably uses 
comparison and nearness in the technique of critical the weight of decision makers to 
enhanced variety filled procedure of decision data, so that the persevering decision creator 
commonalities are closer to the real weights.  

3) The technique suggested in this paper has persistent distinguishability compared to the 
extended FFS technique in works (Senapati, T., and Yager, R. R. (2020)), which can help us to 
control the unique ideal explanation for various decision-makers' safety preferences. To the 
contrary, the extended FFS approach may produce close complete evaluation values for each 
scheme, weakening the distinguishability of this method and making it challenging to 
distinguish the schemes.  

4) There is a little doubt that the two strategies' focal points and methods differ (Own C-M 2009). 
In contrast to the strategy suggested by the former, which generates the Fermatean fuzzy 
number and is used to the MADM problematic with solitary one decision maker, the approach 
offered in this study is appropriate to the MAGDM problem with FFN whose quality weight 
information is completely unknown. The prior way only needs the decision maker to assess the 
favourite relationship between schemes after pairwise judgement, as opposed to the current 
method, which analyses each scheme in relation to each attribute. 

5) The same planned DM approach is used with a smaller MAGDM subject to instruct students 
in a way that produces the best results. The effective and true MAGDM method allows us to 
apply the same strategy to a minor unruly and obtain the same outcome as with the MAGDM 
challenging. 

6) The complex alternative evaluation must be comparable to the undecomposed difficulty's unique 
assessment when the primary MAGDM issue is reduced to a minor issue. To strengthen the 
alternative, we employ techniques like those utilised in the MAGDM problem on small subjects. 

7) The FFSSTWA operator must be satisfied to resonant a proficient and accurate MAGDM 
approach. 

8) We can assume that the position leans are equal based on the outputs of the optional operators 
and previous laborious procedures. The MCDM method is a complete and innovative solution 
for commerce with indecision under DM conditions and is dependent on the Schweizer-Sklar 
aggregation operations. In practical situations, using Schweizer-Sklar norm-dependent 
aggregate operators in a different ranking value are more flexible and cost-effective. 

9) Operations research's branch known as multiple-criteria decision-making openly assesses 
numerous, contradictory factors when making decisions (as well as in environments including 
business, government, and medical). Inconsistent criteria are commonly present while 
analysing possibilities: cost or price is typically one of the fundamental criteria, and a quality 
measure is frequently another, readily at conflict with the cost. Cost, comfort, safety, and fuel 
efficiency may be some of the primary factors we take into consideration when buying a car. 
It is unusual for the economical car to also be the greatest contented and safest one. The goal 
of portfolio management is to maximize returns while minimizing risks, yet the companies with 
the highest potential returns often have the most risk. 
 
 
 



10858 

AIMS Mathematics  Volume 8, Issue 5, 10835–10863. 

6.4. Comparing method with existing new methods 

In this subsection, the proposed method compares with a different method.  
1) This method is innovative and good assessment for Schweizer-Sklar t-norm and t-conorm 

operational comments for FFNS. 
2) Further, the presented FFNS method founded on Schweizer-Sklar considers the concordance 

set beside the different set, but the existing FFS technique does not expressly consider the 
different set when two choices have the same performance. 

3) The proposed aggregation operators are superior to the existing aggregation operators. As 
FFSSTWA is more informative and more flexible. 

4) An extended MCGDM technique for FFNS heightened the sturdiness of the application by 
inspection the alternative superiority, impartiality and subservience dealings completed other 
changes, as well as the graphical explanation of weedy and robust outranking relatives that 
energy elsewhere the construction of preceding replicas.  

5) This feature climaxes the superiority of the original FFNS practise completed the former 
classical. 

Different existing techniques, see Table 14. 

Table 14. Different existing techniques. 

Methods Score Function Ranking Final Ranking 

MCDM [6] 

1

2

3

4

0.2014,

0.8755,

0.5811,

0.6711






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

Pythagorean 
operators [12] 

1

2

3

4

0.0213,

0.1745,

0.0545,

0.0893






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

IFSS [17] 

1

2

3

4

0.0074,

0.1234,

0.0611,

0.1012






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

6.5. Effectiveness of the method 

The anxiety is by what means to evaluate the former multi-criteria efficiency mark for a suitable 
decision scenery because the proposed FFN context, which is an effectiveness or scoring degree-based 
model for MCDA, selects choice with the maximum helpfulness degree, as compared to the existing 
replicas, which are concession degree replicas and select a selection that is contiguous to the ideal 
explanation, see Table 15. 
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Table 15. Effectiveness of the proposed method. 

Methods Score Function Ranking Final Ranking 

MCDM on 
FFSSTWA 

1

2

3

4

0.0014,

0.8105,

0.4522,

0.6022






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

MCDM on 
FFSSTOWA 

1

2

3

4

0.1012,

0.7041,

0.4229,

0.5612






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

MCDM on 
FFSSTHWA 

1

2

3

4

0.1012,

0.2078,

0.1502,

0.1804






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

MCDM on 
FFSSTHWG 

1

2

3

4

0.0123,

0.1829,

0.1045,

0.1345






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

6.6. Limitation 

In this subsection limitation of FFs based on two sets has been exhibited (see Table 16). 

Table 16. Limitation of Fermatean fuzzy set based on two sets. 

Methods Score Function Ranking Final Ranking 

Mondal et al. [17] 

1

2

3

4

0.0121,

0.1987,

0.1333,

0.1721






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

Own C-M [16] 

1

2

3

4

0.0103,

0.1012,

0.0234,

0.0981






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  

 

Zhou et al. [12] 

1

2

3

4

0.0109,

0.1981,

0.0451,

0.1213






 
  
  
  

 

2

4

3

1






 
  
  
  

 

2

4

3

1






 
  
  
  
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7. Conclusions 

The primary aim of this research is to present a unique MADM technique and tie it to a real 
innovation in information and evaluation issues. To achieve this, we focused primarily on three 
components: The data face way, the data aggregation technique, and the operational rules in the data 
aggregation process. Initially, we proposed the concept of FFS, which is a practical and significant 
data presentation strategy for controlling uncertainty. The proposed FFS has the advantage of giving 
DMs more autonomy. To provide an additional flexibility to the circumstance, the Schweizer-Sklar t-
norm and t-conorm operational defined for FFNS. A series of operators, with the combination FFNS 
and SSTT operational rules are presented, namely the FFSSTWA operator, FFSSTOWA operator, 
FFSSTHWA operator, FFSSTWG operator, FFSSTOWG operator, and FFSSTHWG operator, in 
control to hold the interrelationship during qualities. We worked with the SST operator to collectively 
assess data with FFNs. The interrelationship between different attributes might be considered using 
the provided operator. Then, an innovated method to MADM problems based on the suggested 
operators is pre-summit. The FFSSTWA and FFSSTWG operators are utilised to fix the challenge in 
the appropriate ways. To conclude, we coupled the method to an innovativeness automation equal 
appraisal tricky. To demonstrate that the offered operators provide a reducible approach to the MCDM 
problem, a comparison with several existing operators was made. 

In the future, we will offer the proposed techniques to other FFN methods and aggregation 
operators, such as the Muirhead mean operator and presence worth exploring power average operator. 
Additionally, our suggested strategy can be related to additional issues including dealer collecting 
challenges, speculative topics. 

Interdependency of the different sections of the paper has been exhibited in Figure 9. 

 

Figure 9. Flowchart of the paper, to exhibit interdependency of the different section of the paper. 
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