In this research article, we present novel extensions of Milne type inequalities to the realm of Riemann-Liouville fractional integrals. Our approach involves exploring significant functional classes, including convex functions, bounded functions, Lipschitzian functions and functions of bounded variation. To accomplish our objective, we begin by establishing a crucial identity for differentiable functions. Leveraging this identity, we subsequently derive new variations of fractional Milne inequalities.
Citation: Hüseyin Budak, Abd-Allah Hyder. Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities[J]. AIMS Mathematics, 2023, 8(12): 30760-30776. doi: 10.3934/math.20231572
[1] | Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551 |
[2] | Areej A Almoneef, Abd-Allah Hyder, Hüseyin Budak . Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes. AIMS Mathematics, 2024, 9(7): 18417-18439. doi: 10.3934/math.2024898 |
[3] | Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Fractional Milne-type inequalities for twice differentiable functions. AIMS Mathematics, 2024, 9(7): 19771-19785. doi: 10.3934/math.2024965 |
[4] | Dumitru Baleanu, Muhammad Samraiz, Zahida Perveen, Sajid Iqbal, Kottakkaran Sooppy Nisar, Gauhar Rahman . Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function. AIMS Mathematics, 2021, 6(5): 4280-4295. doi: 10.3934/math.2021253 |
[5] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[6] | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini . A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671 |
[7] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[8] | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390 |
[9] | Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625 |
[10] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
In this research article, we present novel extensions of Milne type inequalities to the realm of Riemann-Liouville fractional integrals. Our approach involves exploring significant functional classes, including convex functions, bounded functions, Lipschitzian functions and functions of bounded variation. To accomplish our objective, we begin by establishing a crucial identity for differentiable functions. Leveraging this identity, we subsequently derive new variations of fractional Milne inequalities.
Over the years, numerous researchers have introduced various formulas for numerical integration and have extensively studied the error bounds associated with these formulas. In the field of mathematical inequalities, authors have also focused on deriving new error bounds using different classes of functions, such as convex functions, bounded functions, Lipschitzian functions, functions of bounded variation and more. Furthermore, they have investigated the error bounds for functions that are differentiable, twice differentiable or n-times differentiable. Additionally, some authors have established new bounds by employing the concept of fractional calculus.
The literature contains several significant integral inequalities, including Simpson, Trapezoid, midpoint and others. Many papers have been dedicated to extending and generalizing these integral inequalities. For instance, several trapezoid-type inequalities have been derived for differentiable convex functions[1], bounded functions[2], Lipschitzian functions[3], functions of bounded variation [4] and twice differentiable convex functions[5]. In papers [6,7], the authors focused on fractional versions of trapezoid-type inequalities. Midpoint-type inequalities have also been obtained for differentiable convex functions[8], bounded functions and functions of bounded variation[9], twice differentiable convex functions[10] and fractional integrals [11,12,13,14]. Similarly, several papers have been dedicated to establishing Simpson-type inequalities[15,16,17,18,19,20,21,22,23,24,25,26,27,28].
Milne-type inequalities are a sort of mathematical inequity proposed by the British mathematician William John Millne. These inequalities have found applications in many areas of mathematics, including special function analysis [29], approximation theory [30] and numerical analysis [31]. Milne-type inequalities employ integrals to quantify the difference between a function and its approximation, making them helpful for bounding mistakes and analysing the correctness of numerical and analytical approaches [30]. Milne's open-type formula and Simpson's closed-type formula are two numerical integration methods that share similarities and differences. Both formulas approximate the definite integral of a function using a composite quadrature rule and require a uniformly spaced grid of sample points. However, Milne's formula excludes the first and last intervals, whereas Simpson's formula includes them. Despite these distinctions, both formulas adhere to similar conditions, such as the assumptions of function smoothness and integrability. The choice between the two methods depends on factors such as the characteristics of the function and the desired accuracy. A thorough understanding of their similarities and differences aids researchers in selecting the most appropriate numerical integration technique. Suppose that ϝ:[σ,ρ]→R is a four times continuously differentiable mapping on (σ,ρ), and let ‖ϝ(4)‖∞=supκ∈(σ,ρ)|ϝ(4)(κ)|<∞. Then, one has the inequality[32]
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(κ)dκ|≤7(ρ−σ)423040‖ϝ(4)‖∞. | (1.1) |
Definition 1.1. Let ϝ∈L1[σ,ρ]. The Riemann-Liouville fractional integrals Jασ+ϝ and Jαρ−ϝ of order α>0 are defined by
Jασ+ϝ(κ)=1Γ(α)∫κσ(κ−η)α−1ϝ(η)dη, κ>σ |
and
Jαρ−ϝ(κ)=1Γ(α)∫ρκ(η−κ)α−1ϝ(η)dη, κ<ρ, |
respectively. Here, Γ(α) is the Gamma function and J0σ+ϝ(κ)=J0ρ−ϝ(κ)=ϝ(κ).
For more information and several properties of Riemann-Liouville fractional integrals, please refer to [33,34,35,36,37,38].
In [29], Budak et al. established the first Milne inequality for convex functions in the case of Riemann-Liouville fractional integrals. This result represents a significant advancement in this particular research direction.
Theorem 1.1. Let ϝ:[σ,ρ]→R be a differentiable mapping (σ,ρ) such that ϝ′∈L1([σ,ρ]). Moreover, suppose that the function |ϝ′| exhibits convexity over the interval [σ,ρ] and α>0. Then, we acquire the following Milne type inequalities for Riemann-Liouville fractional integrals
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−2α−1Γ(α+1)(ρ−σ)α[Jασ+ϝ(σ+ρ2)+Jαρ−ϝ(σ+ρ2)]|≤ρ−σ12(α+4α+1)(|ϝ′(σ)|+|ϝ′(ρ)|). |
In this research article, we embark on a comprehensive exploration of new variations of Milne-type inequalities for Riemann-Liouville fractional integrals. We establish fundamental identities for differentiable functions in Section 2, laying the groundwork for subsequent sections. Section 3 focuses on deriving Milne-type inequalities specifically for convex functions, while Section 4 presents the fractional Milne-type inequality for bounded functions. In Section 5, we extend our analysis to Lipschitzian functions, deriving fractional Milne-type inequalities tailored to this function class. Section 6 explores the derivation of fractional Milne-type inequalities for functions of bounded variation. Finally, in the Conclusion and Discussion (Section 7), we summarize our key findings and discuss their implications in advancing the understanding of integral inequalities across diverse mathematical contexts.
Let's begin with the following evaluated integrals, which will be utilized in obtaining our key findings:
Υ1(α)=∫120|ηα−23|dη={2αα+1(23)1α+1+12α+1(α+1)−13,0<α≤ln23ln1213−12α+1(α+1)α>ln23ln12,Υ2(α)=∫120η|ηα−23|dη={αα+2(23)2α+1+12α+2(α+2)−112,0<α≤ln23ln12112−12α+2(α+2)α>ln23ln12,Υ3(α)=∫112|ηα−13|dη={1α+1−12α+1(α+1)−16,0<α≤ln13ln122αα+1(13)1α+1+12α+1(α+1)+1α+1−12α>ln13ln12,Υ4(α)=∫112η|ηα−13|dη={1α+2−12α+2(α+2)−18,0<α≤ln13ln12αα+2(13)2α+1+12α+2(α+2)+1α+2−524α>ln13ln12. | (2.1) |
Now, we prove the following identity for differentiable functions.
Lemma 2.1. Let ϝ:[σ,ρ]→R be a differentiable mapping (σ,ρ) such that ϝ′∈L1([σ,ρ]). Then, for α>0, the following equality holds:
13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]=ρ−σ2[I1+I2−I3−I4], |
where
I1=∫120(ηα−23)ϝ′(ηρ+(1−η)σ)dη,I2=∫112(ηα−13)ϝ′(ηρ+(1−η)σ)dη,I3=∫120(ηα−23)ϝ′(ησ+(1−η)ρ)dη,I4=∫112(ηα−13)ϝ′(ησ+(1−η)ρ)dη. |
Proof. Using the integration by parts, we obtain
I1=∫120(ηα−23)ϝ′(ηρ+(1−η)σ)dη=1ρ−σ(ηα−23)ϝ(ηρ+(1−η)σ)|120−αρ−σ∫120ηα−1ϝ(ηρ+(1−η)σ)dη=1ρ−σ(12α−23)ϝ(σ+ρ2)+23(ρ−σ)ϝ(σ)−αρ−σ∫120ηα−1ϝ(ηρ+(1−η)σ)dη, | (2.2) |
I2=∫112(ηα−13)ϝ′(ηρ+(1−η)σ)dη=1ρ−σ(ηα−13)ϝ(ηρ+(1−η)σ)|112−αρ−σ∫112ηα−1ϝ(ηρ+(1−η)σ)dη=23(ρ−σ)ϝ(ρ)−1ρ−σ(12α−13)ϝ(σ+ρ2)−αρ−σ∫112ηα−1ϝ(ηρ+(1−η)σ)dη. | (2.3) |
Similarly, we get
I3=∫120(ηα−23)ϝ′(ησ+(1−η)ρ)dη=−1ρ−σ(12α−23)ϝ(σ+ρ2)−23(ρ−σ)ϝ(ρ)+αρ−σ∫120ηα−1ϝ(ησ+(1−η)ρ)dη, | (2.4) |
and
I4=∫112(ηα−13)ϝ′(ησ+(1−η)ρ)dη=−23(ρ−σ)ϝ(σ)+1ρ−σ(12α−13)ϝ(σ+ρ2)+αρ−σ∫112ηα−1ϝ(ησ+(1−η)ρ)dη. | (2.5) |
By the equalities (2.2) and (2.3), we have
(ρ−σ)(I1+I2)=23(ϝ(σ)+ϝ(ρ))−13ϝ(σ+ρ2)−α∫10ηα−1ϝ(ηρ+(1−η)σ)dη=23(ϝ(σ)+ϝ(ρ))−13ϝ(σ+ρ2)−α(ρ−σ)α∫ρσ(κ−σ)α−1ϝ(κ)dκ=23(ϝ(σ)+ϝ(ρ))−13ϝ(σ+ρ2)−Γ(α+1)(ρ−σ)αJασ+ϝ(ρ). | (2.6) |
Similarly, by the equalities (2.4) and (2.5), we get
(ρ−σ)(I3+I4)=−23(ϝ(σ)+ϝ(ρ))+13ϝ(σ+ρ2)+Γ(α+1)(ρ−σ)αJαρ−ϝ(σ). | (2.7) |
The equalities (2.6) and (2.7) yield the following equality:
ρ−σ2[I1+I2−I3−I4]=13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]. |
This is the end of the proof of Lemma 2.1.
In this section, we prove some Milne type inequalities by using convex functions.
Theorem 3.1. Let us consider that the conditions stated in Lemma 2.1 are satisfied. Additionally, suppose that the function |ϝ′| exhibits convexity over the interval [σ,ρ]. Then, we acquire the following Milne type inequalities for Riemann-Liouville fractional integrals
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2(Υ1(α)+Υ3(α))(|ϝ′(σ)|+|ϝ′(ρ)|), |
where Υ1 and Υ3 are defined as in (2.1).
Proof. By taking modulus in Lemma 2.1 and using the convexity of |ϝ′|, we have
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2[|I1|+|I2|+|I3|+|I4|]. | (3.1) |
By convexity of |ϝ′|, we have
|I1|≤∫120|ηα−23||ϝ′(ηρ+(1−η)σ)|dη≤∫120|ηα−23|[η|ϝ′(ρ)|+(1−η)|ϝ′(σ)|]dη=Υ2(α)|ϝ′(ρ)|+(Υ1(α)−Υ2(α))|ϝ′(σ)|, | (3.2) |
and similarly
|I3|≤∫120|ηα−23||ϝ′(ησ+(1−η)ρ)|dη≤Υ2(α)|ϝ′(σ)|+(Υ1(α)−Υ2(α))|ϝ′(ρ)|. | (3.3) |
Similarly, by advantange of the convexity of |ϝ′|, we get
|I2|≤∫112|ηα−13||ϝ′(ηρ+(1−η)σ)|dη≤∫112|ηα−13|[η|ϝ′(ρ)|+(1−η)|ϝ′(σ)|]dη=Υ4(α)|ϝ′(ρ)|+(Υ3(α)−Υ4(α))|ϝ′(σ)|, | (3.4) |
and
|I4|≤∫112|ηα−13||ϝ′(ησ+(1−η)ρ)|dη≤Υ4(α)|ϝ′(σ)|+(Υ3(α)−Υ4(α))|ϝ′(ρ)|. | (3.5) |
By substituting the inequalities (3.2)–(3.5) in (3.1), then we obtain the desired result.
Remark 3.1. Let us note that α=1 in Theorem 3.1. Then we have the following inequality
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(η)dη|≤5(ρ−σ)24(|ϝ′(σ)|+|ϝ′(ρ)|), |
which is given in [29].
Theorem 3.2. Suppose that the assumptions of Lemma 2.1 hold. Suppose also that the mapping |ϝ′|q, q>1 is convex on [σ,ρ]. Then, we have the following Milne type inequality for Riemann-Liouville fractional integrals
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2{(∫120|ηα−23|pdη)1p×[(|ϝ′(ρ)|q+3|ϝ′(σ)|q8)1q+(|ϝ′(σ)|q+3|ϝ′(ρ)|q8)1q]+(∫112|ηα−13|pdη)1p×[(3|ϝ′(ρ)|q+|ϝ′(σ)|q8)1q+(3|ϝ′(σ)|q+|ϝ′(ρ)|q8)1q]}, | (3.6) |
where 1p+1q=1.
Proof. By applying Hölder inequality and by using the convexity of |ϝ′|q, we obtain
|I1|≤∫120|ηα−23||ϝ′(ηρ+(1−η)σ)|dη≤(∫120|ηα−23|pdη)1p(∫120|ϝ′(ηρ+(1−η)σ)|qdη)1q≤(∫120|ηα−23|pdη)1p(∫120[η|ϝ′(ρ)|q+(1−η)|ϝ′(σ)|q]dη)1q=(∫120|ηα−23|pdη)1p(|ϝ′(ρ)|q+3|ϝ′(σ)|q8)1q. | (3.7) |
Similar way, we obtain
|I2|≤∫112|ηα−13||ϝ′(ηρ+(1−η)σ)|dη≤(∫112|ηα−13|pdη)1p(3|ϝ′(ρ)|q+|ϝ′(σ)|q8)1q, | (3.8) |
|I3|≤∫120|ηα−23||ϝ′(ησ+(1−η)ρ)|dη≤(∫120|ηα−23|pdη)1p(|ϝ′(σ)|q+3|ϝ′(ρ)|q8)1q, | (3.9) |
and
|I4|≤∫112|ηα−13||ϝ′(ησ+(1−η)ρ)|dη≤(∫112|ηα−13|pdη)1p(3|ϝ′(σ)|q+|ϝ′(ρ)|q8)1q. | (3.10) |
If we put the inequalities (3.7)–(3.10) in (3.1), then we obtain the required inequality (3.6).
Corollary 3.1. Let us consider α=1 in Theorem 3.2. Then, we have the following inequality
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(η)dη|≤ρ−σ2(4p+1−16p+1(p+1))1p×{(|ϝ′(ρ)|q+3|ϝ′(σ)|q8)1q+(|ϝ′(σ)|q+3|ϝ′(ρ)|q8)1q+(3|ϝ′(ρ)|q+5|ϝ′(σ)|q8)1q+(3|ϝ′(σ)|q+|ϝ′(ρ)|q8)1q}. |
Theorem 3.3. Assume that the assumptions of Lemma 2.1 hold. If the mapping |ϝ′|q, q≥1, is convex on [σ,ρ], then we have the following Milne type inequalities for Riemann-Liouville fractional integrals
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2{(Υ1(α))1−1q(Υ2(α)|ϝ′(ρ)|q+(Υ1(α)−Υ2(α))|ϝ′(σ)|q)1q+(Υ3(α))1−1q(Υ4(α)|ϝ′(ρ)|q+(Υ3(α)−Υ4(α))|ϝ′(σ)|q)1q+(Υ1(α))1−1q(Υ2(α)|ϝ′(σ)|q+(Υ1(α)−Υ2(α))|ϝ′(ρ)|q)1q+(Υ3(α))1−1q(Υ4(α)|ϝ′(σ)|q+(Υ3(α)−Υ4(α))|ϝ′(ρ)|q)1q}, | (3.11) |
where Υ1-Υ4 are defined as in (2.1).
Proof. By applying the inequality of the power-mean and by using the convexity of |ϝ′|q, we obtain
|I1|≤∫120|ηα−23||ϝ′(ηρ+(1−η)σ)|dη≤(∫120|ηα−23|dη)1−1q(∫120|ηα−23||ϝ′(ηρ+(1−η)σ)|qdη)1q≤(Υ1(α))1−1q(∫120|ηα−23|[η|ϝ′(ρ)|q+(1−η)|ϝ′(σ)|q]dη)1q=(Υ1(α))1−1q(Υ2(α)|ϝ′(ρ)|q+(Υ1(α)−Υ2(α))|ϝ′(σ)|q)1q. | (3.12) |
Similary, we get
|I2|≤∫112|ηα−13||ϝ′(ηρ+(1−η)σ)|dη≤(Υ3(α))1−1q(Υ4(α)|ϝ′(ρ)|q+(Υ3(α)−Υ4(α))|ϝ′(σ)|q)1q, | (3.13) |
|I3|≤∫120|ηα−23||ϝ′(ησ+(1−η)ρ)|dη≤(Υ1(α))1−1q(Υ2(α)|ϝ′(σ)|q+(Υ1(α)−Υ2(α))|ϝ′(ρ)|q)1q, | (3.14) |
and
|I4|≤∫112|ηα−13||ϝ′(ησ+(1−η)ρ)|dη≤(Υ3(α))1−1q(Υ4(α)|ϝ′(σ)|q+(Υ3(α)−Υ4(α))|ϝ′(ρ)|q)1q. | (3.15) |
If we substitute the inequalities (3.12)–(3.15) in (3.1), then we obtain
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2{(Υ1(α))1−1q(Υ2(α)|ϝ′(ρ)|q+(Υ1(α)−Υ2(α))|ϝ′(σ)|q)1q+(Υ3(α))1−1q(Υ4(α)|ϝ′(ρ)|q+(Υ3(α)−Υ4(α))|ϝ′(σ)|q)1q+(Υ1(α))1−1q(Υ2(α)|ϝ′(σ)|q+(Υ1(α)−Υ2(α))|ϝ′(ρ)|q)1q+(Υ3(α))1−1q(Υ4(α)|ϝ′(σ)|q+(Υ3(α)−Υ4(α))|ϝ′(ρ)|q)1q}, |
which proves the inequality (3.11).
Remark 3.2. If we take α=1 in Theorem 3.3, then we get the following inequality
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(η)dη|≤524(ρ−σ)[(|ϝ′(ρ)|q+4|ϝ′(σ)|q5)1q+(4|ϝ′(ρ)|q+|ϝ′(σ)|q5)1q], |
which is given in [29,Remark 2].
In this section, we present some fractional Milne type inequalities for bounded functions.
Theorem 4.1. Suppose that the assumptions of Lemma 2.1 hold. If there exist m,M∈R such that m≤ϝ′(η)≤M for η∈[σ,ρ], then we have the following Milne type inequality for Riemann-Liouville fractional integrals
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2[Υ1(α)+Υ3(α)](M−m), |
where Υ1 and Υ3 are defined as in (2.1).
Proof. By Lemma 2.1, we can easily write
13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]=ρ−σ2[∫120(ηα−23)[ϝ′(ηρ+(1−η)σ)−m+M2]dη+∫112(ηα−13)[ϝ′(ηρ+(1−η)σ)−m+M2]dη+∫120(ηα−23)[m+M2−ϝ′(ησ+(1−η)ρ)]dη∫112(ηα−13)[m+M2−ϝ′(ησ+(1−η)ρ)]dη]. | (4.1) |
By using the properties of modulus in (4.1), we obtain
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2[∫120|ηα−23||ϝ′(ηρ+(1−η)σ)−m+M2|dη+∫112|ηα−13||ϝ′(ηρ+(1−η)σ)−m+M2|dη+∫120|ηα−23||m+M2−ϝ′(ησ+(1−η)ρ)|dη∫112|ηα−13||m+M2−ϝ′(ησ+(1−η)ρ)|dη]. |
From the assumption m≤ϝ′(η)≤M for η∈[σ,ρ], we have
|ϝ′(ηρ+(1−η)σ)−m+M2|≤M−m2, | (4.2) |
and
|m+M2−ϝ′(ησ+(1−η)ρ)|≤M−m2. | (4.3) |
By the inequalities (4.2) and (4.3), we get
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2[∫120|ηα−23|dη+∫112|ηα−13|dη](M−m)=ρ−σ2[Υ1(α)+Υ3(α)](M−m). |
This completes the proof.
Corollary 4.1. If we take α=1 in Theorem 4.1, then we get the following inequality
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(η)dη|≤5(ρ−σ)24(M−m), |
which is given in [29,Corollary 2].
Corollary 4.2. Under assumptions of Theorem 4.1, if there exists M∈R+ such that |ϝ′(η)|≤M for all η∈[σ,ρ], then we have
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤M(ρ−σ)[Υ1(α)+Υ3(α)]. |
Remark 4.1. If we choose α=1 in Corollary 4.2, then we get the inequality
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(η)dη|≤512(ρ−σ)M, |
which is given by Alomari and Liu in [39].
In this section, we give some fractional Milne type inequalities for Lipschitzian functions.
Theorem 5.1. Suppose that the assumptions of Lemma 2.1 hold. If ϝ′ is an L-Lipschitzian function on [σ,ρ], then we have the the following Milne type inequality for Riemann-Liouville fractional integrals
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤(ρ−σ)22[Υ1(α)−2Υ2(α)+2Υ4(α)−Υ3(α)]L, |
where Υ1-Υ4 are defined as in (2.1).
Proof. We can rewite Lemma 2.1 as
13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]=ρ−σ2[∫120(ηα−23)[ϝ′(ηρ+(1−η)σ)−ϝ′(ησ+(1−η)ρ)]dη+∫112(ηα−13)[ϝ′(ηρ+(1−η)σ)−ϝ′(ησ+(1−η)ρ)]dη]. |
Since ϝ′ is L-Lipschitzian function, we obtain
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤ρ−σ2[∫120|ηα−23||ϝ′(ηρ+(1−η)σ)−ϝ′(ησ+(1−η)ρ)|dη+∫112|ηα−13||ϝ′(ηρ+(1−η)σ)−ϝ′(ησ+(1−η)ρ)|dη]≤ρ−σ2[∫120|ηα−23|L(1−2η)(ρ−σ)dη+∫112|ηα−13|L(2η−1)(ρ−σ)dη]=(ρ−σ)22[Υ1(α)−2Υ2(α)+2Υ4(α)−Υ3(α)]L. |
Remark 5.1. If we take α=1 in Theorem 5.1, then we get the inequality
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(η)dη|≤(ρ−σ)28L, |
which is given in [29, Corollary 4].
In this section, we prove a fractional Milne type inequality for function of bounded variation.
Theorem 6.1. Let ϝ:[σ,ρ]→R be a function of bounded variation on [σ,ρ]. Then we have the following Milne type inequality for Riemann-Liouville fractional integrals
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤23ρ⋁σ(ϝ), | (6.1) |
where ρ⋁σ(ϝ) denotes the total variation of ϝ on [σ,ρ].
Proof. Define the mappings Kα(κ) by,
Kα(κ)={(κ−σ)α−2(ρ−σ)α3,σ≤κ≤σ+ρ2(κ−σ)α−(ρ−σ)α3σ+ρ2<κ≤ρ, |
and
Lα(κ)={(ρ−σ)α3−(ρ−κ)α,σ≤κ≤σ+ρ22(ρ−σ)α3−(ρ−κ)ασ+ρ2<κ≤ρ. |
Integrating by parts, we get
ρ∫σKα(κ)dϝ(κ)=σ+ρ2∫σ((κ−σ)α−2(ρ−σ)α3)dϝ(κ)+ρ∫σ+ρ2((κ−σ)α−(ρ−σ)α3)dϝ(κ)=((κ−σ)α−2(ρ−σ)α3)ϝ(κ)|σ+ρ2σ−ασ+ρ2∫σ(κ−σ)α−1ϝ(κ)dκ+((κ−σ)α−(ρ−σ)α3)ϝ(κ)|ρσ+ρ2−αρ∫σ+ρ2(κ−σ)α−1ϝ(κ)dκ=((ρ−σ)α2α−2(ρ−σ)α3)ϝ(σ+ρ2)+2(ρ−σ)α3ϝ(σ)+2(ρ−σ)α3ϝ(ρ)−((ρ−σ)α2α−(ρ−σ)α3)ϝ(σ+ρ2)−αρ∫σ(κ−σ)α−1ϝ(κ)dκ=(ρ−σ)α3[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)Jαρ−ϝ(σ). | (6.2) |
Similarly, we have
ρ∫σLα(κ)dϝ(κ)=(ρ−σ)α3[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)Jασ+ϝ(ρ). |
Therefore, we obtain
13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]=12(ρ−σ)αρ∫σ[Kα(κ)+Lα(κ)]dϝ(κ). |
It is well known that if g,ϝ:[σ,ρ]→R are such that g is continuous on [σ,ρ] and ϝ is of bounded variation on [σ,ρ], then ρ∫σg(η)dϝ(η) exist and
|ρ∫σg(η)dϝ(η)|≤supη∈[σ,ρ]|g(η)|ρ⋁σ(ϝ). | (6.3) |
On the other hand, using (6.3), we get
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−Γ(α+1)2(ρ−σ)α[Jασ+ϝ(ρ)+Jαρ−ϝ(σ)]|≤12(ρ−σ)α[|ρ∫σKα(κ)dϝ(κ)|+|ρ∫σLα(κ)dϝ(κ)|]≤12(ρ−σ)α[|σ+ρ2∫σ((κ−σ)α−2(ρ−σ)α3)dϝ(κ)|+|ρ∫σ+ρ2((κ−σ)α−(ρ−σ)α3)dϝ(κ)|+|σ+ρ2∫σ((ρ−σ)α3−(ρ−κ)α)dϝ(κ)|+|ρ∫σ+ρ2(2(ρ−σ)α3−(ρ−κ)α)dϝ(κ)|]≤12(ρ−σ)α[supκ∈[σ,σ+ρ2]|(κ−σ)α−2(ρ−σ)α3|σ+ρ2⋁σ(ϝ)+supκ∈[σ+ρ2,ρ]|(κ−σ)α−(ρ−σ)α3|ρ⋁σ+ρ2(ϝ)+supκ∈[σ,σ+ρ2]|(ρ−σ)α3−(ρ−κ)α|σ+ρ2⋁σ(ϝ)+supκ∈[σ+ρ2,ρ]|2(ρ−σ)α3−(ρ−κ)α|ρ⋁σ+ρ2(ϝ)]=12(ρ−σ)α[2(ρ−σ)α3σ+ρ2⋁σ(ϝ)+2(ρ−σ)α3σ+ρ2⋁σ(ϝ)+2(ρ−σ)α3σ+ρ2⋁σ(ϝ)+2(ρ−σ)α3σ+ρ2⋁σ(ϝ)]=23ρ⋁σ(ϝ). |
This completes the proof.
Remark 6.1. If we take α=1 in Theorem 6.1, then we get the inequality
|13[2ϝ(σ)−ϝ(σ+ρ2)+2ϝ(ρ)]−1ρ−σ∫ρσϝ(η)dη|≤23ρ⋁σ(ϝ) |
which is given by Alomari and Liu in [39].
In this study, we have obtained new variations of Milne-type inequalities in the case of Riemann-Liouville fractional integrals. By utilizing important function classes such as convexity, bounded functions, Lipschitzian functions and functions of bounded variation, we first established a crucial identity for differentiable functions. Leveraging this identity, we derived novel versions of fractional Milne inequalities. The results obtained provide extended and enhanced versions of Milne-type inequalities in the context of Riemann-Liouville fractional integrals. Moreover, the obtained findings highlight the significant role of such fractional integral inequalities in analysis and applications. The implications of the obtained results in other mathematical problems also present an interesting avenue for future investigations. The obtained results not only contribute to the advancement of fractional integral theory and integral inequalities but also indicate potential applications in various mathematical problems. Further extensions and in-depth exploration of the findings in other mathematical domains can be pursued in future research.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant (RGP.2/102/44).
The authors declare that there are no conflicts of interest regarding the publication of this article.
[1] |
S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
![]() |
[2] | P. Cerone, S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, In: G. Anastassiou (Ed.), Handbook of analytic-computational methods in applied mathematics, New York: CRC Press, 2000. |
[3] |
M. W. Alomari, A companion of the generalized trapezoid inequality and applications, J. Math. Appl., 36 (2013), 5–15. https://doi.org/10.7862/rf.2013.1 doi: 10.7862/rf.2013.1
![]() |
[4] | S. S. Dragomir, On trapezoid quadrature formula and applications, Kragujevac. J. Math., 23 (2001), 25–36. |
[5] |
M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54 (2011), 2175–2182. https://doi.org/10.1016/j.mcm.2011.05.026 doi: 10.1016/j.mcm.2011.05.026
![]() |
[6] | M. Z. Sarikaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, F. U. Math. Inform., 29 (2014), 371–384. |
[7] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[8] |
U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
![]() |
[9] | S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kra. J. Math., 22 (2000), 13–19. |
[10] |
M. Z. Sarikaya, A. Saglam, H. Yıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Problems Compt. Math., 5 (2012), 1–11. https://doi.org/10.12816/0006114 doi: 10.12816/0006114
![]() |
[11] |
M. A. Barakat, A. Hyder, D. Rizk, New fractional results for Langevin equations through extensive fractional operators, AIMS Mathematics, 8 (2023), 6119–6135. https://doi.org/10.3934/math.2023309 doi: 10.3934/math.2023309
![]() |
[12] |
M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals, B. Korean Math. Soc., 52 (2015), 707–716. https://doi.org/10.4134/BKMS.2015.52.3.707 doi: 10.4134/BKMS.2015.52.3.707
![]() |
[13] |
M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Mis. Math. N., 17 (2016), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
![]() |
[14] |
Y. Zhou, T. Du, The Simpson-type integral inequalities involving twice local fractional differentiable generalized (s,p)-convexity and their applications, Fractals, 31 (2023), 2350038. https://doi.org/10.1142/S0218348X2350038X doi: 10.1142/S0218348X2350038X
![]() |
[15] |
S. I. Butt, A. Khan, New fractal-fractional parametric inequalities with applications, Chaos Solitons Fractals, 172 (2023), 113529. https://doi.org/10.1016/j.chaos.2023.113529 doi: 10.1016/j.chaos.2023.113529
![]() |
[16] |
J. Chen, X. Huang, Some new inequalities of Simpson's type for s-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. https://doi.org/10.2298/FIL1715989C doi: 10.2298/FIL1715989C
![]() |
[17] |
S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. https://doi.org/10.1155/S102558340000031X doi: 10.1155/S102558340000031X
![]() |
[18] |
T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045
![]() |
[19] |
T. Du, X. Yuan, On the parameterized fractal integral inequalities and related applications, Chaos Solitons Fractals, 170 (2023), 113375. https://doi.org/10.1016/j.chaos.2023.113375 doi: 10.1016/j.chaos.2023.113375
![]() |
[20] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Mathematics, 5 (2020), 5859–5883. https://doi.org/10.3934/math.2020375 doi: 10.3934/math.2020375
![]() |
[21] |
S. Hussain, S. Qaisar, More results on Simpson's type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5 (2016), 1–9. https://doi.org/10.1186/s40064-016-1683-x doi: 10.1186/s40064-016-1683-x
![]() |
[22] |
C. Luo, T. Du, Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat, 34 (2020), 751–760. https://doi.org/10.2298/FIL2003751L doi: 10.2298/FIL2003751L
![]() |
[23] |
J. Nasir, S. Qaisar, S. I. Butt, K. A. Khan, R. M. Mabela, Some Simpson's Riemann-Liouville fractional integral inequalities with applications to special functions, J. Funct. Space., 2022 (2022), 2113742. https://doi.org/10.1155/2022/2113742 doi: 10.1155/2022/2113742
![]() |
[24] |
M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2000), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
![]() |
[25] |
E. Set, A. O. Akdemir, M. E. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat, 31 (2017), 4415–4420. https://doi.org/10.2298/FIL1714415S doi: 10.2298/FIL1714415S
![]() |
[26] |
E. Set, S. I. Butt, A. O. Akdemir, A. Karaoglan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 110554. https://doi.org/10.1016/j.chaos.2020.110554 doi: 10.1016/j.chaos.2020.110554
![]() |
[27] |
Y. Yu, J. Liu, T. Du, Certain error bounds on the parameterized integral inequalities in the sense of fractal sets, Chaos Solitons Fractals, 161 (2022), 112328. https://doi.org/10.1016/j.chaos.2022.112328 doi: 10.1016/j.chaos.2022.112328
![]() |
[28] |
X. Yuan, L. E. I. Xu, T. Du, Simpson-like inequalities for twice differentiable (s,p)-convex mappings involving with AB-fractional integrals and their applications, Fractals, 31 (2023), 2350024. https://doi.org/10.1142/S0218348X2350024X doi: 10.1142/S0218348X2350024X
![]() |
[29] |
H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023 (2023), 10. https://doi.org/10.1186/s13660-023-02921-5 doi: 10.1186/s13660-023-02921-5
![]() |
[30] |
P. Bosch, J. M. Rodriguez, J. M. Sigarreta, On new Milne-type inequalities and applications, J. Inequal. Appl., 2023 (2023), 3. https://doi.org/10.1186/s13660-022-02910-0 doi: 10.1186/s13660-022-02910-0
![]() |
[31] |
B. Bin-Mohsin, M. Z. Javed, M. U. Awan, A. G. Khan, C. Cesarano, M. A. Noor, Exploration of quantum Milne-Mercer-type inequalities with applications, Symmetry, 15 (2023), 1096. https://doi.org/10.3390/sym15051096 doi: 10.3390/sym15051096
![]() |
[32] | A. D. Booth, Numerical methods, California: Butterworths, 1966. |
[33] |
T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Solitons Fractals, 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
![]() |
[34] | R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Wien: Springer-Verlag, 1997. |
[35] |
A. Hyder, M. A. Barakat, A. H. Soliman, A new class of fractional inequalities through the convexity concept and enlarged Riemann-Liouville integrals, J. Inequal. Appl., 2023 (2023), 137. https://doi.org/10.1186/s13660-023-03044-7 doi: 10.1186/s13660-023-03044-7
![]() |
[36] |
A. Hyder, M. A. Barakat, A. Fathallah, Enlarged integral inequalities through recent fractional generalized operators, J. Inequal. Appl., 2022 (2022), 95. https://doi.org/10.1186/s13660-022-02831-y doi: 10.1186/s13660-022-02831-y
![]() |
[37] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[38] | S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[39] | M. Alomari, Z. Liu, New error estimations for the Milne's quadrature formula in terms of at most first derivatives, Kon. J. Math., 1 (2013), 17–23. |
1. | Waqar Afzal, Mujahid Abbas, Daniel Breaz, Luminiţa-Ioana Cotîrlă, Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents, 2024, 8, 2504-3110, 518, 10.3390/fractalfract8090518 | |
2. | Areej A Almoneef, Abd-Allah Hyder, Hüseyin Budak, Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes, 2024, 9, 2473-6988, 18417, 10.3934/math.2024898 | |
3. | Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat, Fractional Milne-type inequalities for twice differentiable functions, 2024, 9, 2473-6988, 19771, 10.3934/math.2024965 | |
4. | İzzettin Demir, A New Approach of Milne-type Inequalities Based on Proportional Caputo-Hybrid Operator, 2023, 10, 2409-5761, 102, 10.15377/2409-5761.2023.10.10 | |
5. | Wali Haider, Hüseyin Budak, Asia Shehzadi, Fatih Hezenci, Haibo Chen, Analysing Milne-type inequalities by using tempered fractional integrals, 2024, 14, 1664-2368, 10.1007/s13324-024-00958-3 | |
6. | Abdelghani Lakhdari, Hüseyin Budak, Muhammad Uzair Awan, Badreddine Meftah, Extension of Milne-type inequalities to Katugampola fractional integrals, 2024, 2024, 1687-2770, 10.1186/s13661-024-01909-4 | |
7. | Henok Desalegn Desta, Hüseyin Budak, Hasan Kara, New Perspectives on Fractional Milne-Type Inequalities: Insights from Twice-Differentiable Functions, 2024, 7, 2619-9653, 30, 10.32323/ujma.1397051 | |
8. | Wali Haider, Hüseyin Budak, Asia Shehzadi, Fatih Hezenci, Haibo Chen, A comprehensive study on Milne-type inequalities with tempered fractional integrals, 2024, 2024, 1687-2770, 10.1186/s13661-024-01855-1 | |
9. | Abdelghani Lakhdari, Hüseyin Budak, Nabil Mlaiki, Badreddine Meftah, Thabet Abdeljawad, New insights on fractal–fractional integral inequalities: Hermite–Hadamard and Milne estimates, 2025, 193, 09600779, 116087, 10.1016/j.chaos.2025.116087 | |
10. | Abdelkader Moumen, Rabah Debbar, Badreddine Meftah, Khaled Zennir, Hicham Saber, Tariq Alraqad, Etaf Alshawarbeh, On a Certain Class of GA-Convex Functions and Their Milne-Type Hadamard Fractional-Integral Inequalities, 2025, 9, 2504-3110, 129, 10.3390/fractalfract9020129 |