We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if Ai,Bi,Xi∈B(H) (i=1,2,⋯,n), m∈N, p,q>1 with 1p+1q=1 and ϕ and ψ are non-negative functions on [0,∞) which are continuous such that ϕ(t)ψ(t)=t for all t∈[0,∞), then
w2r(n∑i=1XiAmiBi)≤n2r−1mm∑j=1‖n∑i=11pSpri,j+1qTqri,j‖−r0inf‖ξ‖=1ρ(ξ),
where r0=min{1p,1q}, Si,j=Xiϕ2(|Aj∗i|)X∗i, Ti,j=(Am−jiBi)∗ψ2(|Aji|)Am−jiBi and
ρ(ξ)=n2r−1mm∑j=1n∑i=1(⟨Sri,jξ,ξ⟩p2−⟨Tri,jξ,ξ⟩q2)2.
Citation: Mohammad H. M. Rashid, Feras Bani-Ahmad. An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality[J]. AIMS Mathematics, 2023, 8(11): 26384-26405. doi: 10.3934/math.20231347
[1] | Yaser Khatib, Stanford Shateyi . Improvement of inequalities related to powers of the numerical radius. AIMS Mathematics, 2024, 9(7): 19089-19103. doi: 10.3934/math.2024930 |
[2] | Waqar Afzal, Khurram Shabbir, Thongchai Botmart, Savin Treanţă . Some new estimates of well known inequalities for $ (h_1, h_2) $-Godunova-Levin functions by means of center-radius order relation. AIMS Mathematics, 2023, 8(2): 3101-3119. doi: 10.3934/math.2023160 |
[3] | Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906 |
[4] | Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423 |
[5] | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini . A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671 |
[6] | Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Khalil Hadi Hakami, Hamad Zogan . An analysis of fractional integral calculus and inequalities by means of coordinated center-radius order relations. AIMS Mathematics, 2024, 9(11): 31087-31118. doi: 10.3934/math.20241499 |
[7] | Najla Altwaijry, Cristian Conde, Silvestru Sever Dragomir, Kais Feki . Further norm and numerical radii inequalities for operators involving a positive operator. AIMS Mathematics, 2025, 10(2): 2684-2696. doi: 10.3934/math.2025126 |
[8] | Yonghui Ren . Some new Young type inequalities. AIMS Mathematics, 2024, 9(3): 7414-7425. doi: 10.3934/math.2024359 |
[9] | Chaojun Yang . More inequalities on numerical radii of sectorial matrices. AIMS Mathematics, 2021, 6(4): 3927-3939. doi: 10.3934/math.2021233 |
[10] | Waqar Afzal, Waqas Nazeer, Thongchai Botmart, Savin Treanţă . Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation. AIMS Mathematics, 2023, 8(1): 1696-1712. doi: 10.3934/math.2023087 |
We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if Ai,Bi,Xi∈B(H) (i=1,2,⋯,n), m∈N, p,q>1 with 1p+1q=1 and ϕ and ψ are non-negative functions on [0,∞) which are continuous such that ϕ(t)ψ(t)=t for all t∈[0,∞), then
w2r(n∑i=1XiAmiBi)≤n2r−1mm∑j=1‖n∑i=11pSpri,j+1qTqri,j‖−r0inf‖ξ‖=1ρ(ξ),
where r0=min{1p,1q}, Si,j=Xiϕ2(|Aj∗i|)X∗i, Ti,j=(Am−jiBi)∗ψ2(|Aji|)Am−jiBi and
ρ(ξ)=n2r−1mm∑j=1n∑i=1(⟨Sri,jξ,ξ⟩p2−⟨Tri,jξ,ξ⟩q2)2.
Let H be complex Hilbert space and B(H) be the C∗-algebra of all bounded linear operator on H. An operator T∈B(H) is said to be positive if ⟨Tξ,ξ⟩≥0 holds for all ξ∈H. We write T≥0 if T is positive.
The numerical radius of T∈B(H) is defined by
w(T)=sup{|λ|:λ∈W(T)}=sup{|⟨Tξ,ξ⟩|:ξ∈H,‖ξ‖=1}. |
It is well known that w(⋅) defines a norm on B(H), which is equivalent to the usual operator norm ‖⋅‖. In fact, for any T∈B(H),
12‖T‖≤w(T)≤‖T‖. | (1.1) |
Also, if T∈B(H) is normal, then w(T)=‖T‖.
An important inequality for w(T) is the power inequality stating that w(Tn)≤(w(T))n for every natural numbers n.
Several numerical radius inequalities improving the inequalities in (1.1) have been recently given in [5,6,12,19,20,21,22]. For instance, Kittaneh [13,14] proved that for any A∈B(H),
w(A)≤12‖|A|+|A∗|‖≤12(‖A‖+‖A2‖1/2), | (1.2) |
where |A|=√A∗A is the absolute value of A, and
14‖A∗A+AA∗‖≤w2(A)≤12‖A∗A+AA∗‖. | (1.3) |
Also, in the same paper, it was shown that
‖A+B‖2≤‖|A|2+|B|2‖+‖|A∗|2+|B∗|2‖. | (1.4) |
Kittaneh and El-Haddad [15] established the generalizations of inequality (1.2) and the second inequality (1.3) as follows:
wr(A)≤12‖|A|2rλ+|A∗|2r(1−λ)‖ | (1.5) |
and
w2r(A)≤‖λ|A|2r+(1−λ)|A∗|2r‖, | (1.6) |
where 0<λ<1 and r≥1.
A general numerical radius inequality has been established by Kittaneh [14], it has been proved that if A,B,C,D,T,S∈B(H), then
w(ATB+CSD)≤12‖A|T∗|2(1−α)A∗+B∗|T|2αB+C|S∗|2(1−α)C∗+D∗|S|2αD‖ | (1.7) |
for all α∈(0,1).
Although several open problems relating to numerical radius inequalities for bounded linear operators remain unsolved, work on establishing numerical radius inequalities for a number of bounded linear operators has begun (see, for example, [10] and [19,20,21,22]). If A,B∈B(H), then
w(AB)≤4w(A)w(B). |
In the case that AB=BA, we have
w(AB)≤2w(A)w(B). |
Moreover, if A and B are normal, then
w(AB)≤w(A)w(B). |
Recently, Dragomir [7] proved that if A,B∈B(H) and r≥1, then
wr(B∗A)≤12‖|A|2r+|B∗|2r‖. | (1.8) |
Shebrawi and Albadawi [23] discovered a fascinating numerical radius inequality, it has been shown that if A,X,B∈B(H), then
wr(A∗XB)≤12‖(A∗|X∗|2νA)r+(B∗|X|2(1−ν)B)r‖,r≥1,0<ν<1. | (1.9) |
Recently, Al-Dolat and Al-Zoubi [3], showed that if Ai,Bi,Xi∈B(H) (i=1,2,⋯,n), m∈N and ϕ and ψ are non-negative functions on [0,∞) which are continuous such that ϕ(t)ψ(t)=t for all t∈[0,∞), then
wr(n∑i=1XiAmiBi)≤n2r−12mm∑j=1‖n∑i=1(Ei,j)r+(Wi,j)r‖ | (1.10) |
for r≥1, where Ei,j=Xiϕ2(|Aj∗i|)X∗i and Wi,j=(Am−jiBi)∗ψ2(|Aji|)Am−jiBi.
The goal of this study is to develop significant extensions of these inequalities based on the classic convexity inequalities for nonnegative real numbers and some operator inequalities. For the sum of two operators, usual operator norm inequalities and a related numerical radius inequality are also provided. In specifically, if i=1,2,⋯n∈N, Ai,Bi, and Xi are bounded linear operators, then we estimate the numerical radius to ∑mi=1XiAmiBi for some m∈N.
Using well-known new numerical radius inequalities as an example, we constructed a general numerical radius inequality for Hilbert space operators in this section. This section is initiated with an operator for norm inequality. In fact, we provide an extra upper bound for ‖B∗A+D∗C‖. However, the proof of the theorem depends on the next lemma.
Lemma 2.1 ([4]). Let ξ,ζ,η∈H. Then we have
|⟨η,ξ⟩|2+|⟨η,ζ⟩|2≤‖η‖2max{‖ξ‖2,‖ζ‖2}+|⟨ξ,ζ⟩|. | (2.1) |
Theorem 2.2. Let A,B,C,D∈B(H). Then
‖B∗A+DC∗‖2≤12[‖|A∗B|2+|CD∗|2‖+‖|A∗B|2−|CD∗|2‖]+w(DC∗A∗B)+2‖B∗A‖‖DC∗‖. |
Proof. For ξ,ζ∈H, we have by triangle inequality, we have
|⟨(B∗A+DC∗)ξ,ζ⟩|2≤|⟨B∗Aξ,ζ⟩|2+|⟨DC∗ξ,ζ⟩|2+2|⟨B∗Aξ,ζ⟩⟨DC∗ξ,ζ⟩|. | (2.2) |
Now in inequality (2.1), for all ξ,ζ∈H, letting ξ=A∗Bζ, ζ=CD∗ζ and η=ξ with ‖ξ‖=‖ζ‖=1, we get
|⟨ξ,A∗Bζ⟩|2+|⟨ξ,CD∗ζ⟩|2≤max{‖A∗Bζ‖2,‖CD∗ζ‖2}+|⟨A∗Bζ,CD∗ζ⟩|. |
Now use the fact that
max{σ,τ}=12[σ+τ+|σ−τ|]for anyσ,τ∈R, |
we have
|⟨B∗Aξ,ζ⟩|2+|⟨DC∗ξ,ζ⟩|2≤12[⟨|A∗B|2+|CD∗|2)ζ,ζ⟩+|⟨(|A∗B|2−|CD∗|2)ζ,ζ⟩|+|⟨A∗Bζ,CD∗ζ⟩|]. | (2.3) |
Combining the inequalities (2.2) and (2.3), we have
|⟨(B∗A+DC∗)ξ,ζ⟩|2≤12[⟨|A∗B|2+|CD∗|2)ζ,ζ⟩+|⟨(|A∗B|2−|CD∗|2)ζ,ζ⟩|+|⟨A∗Bζ,CD∗ζ⟩|].+2|⟨B∗Aζ,ζ⟩⟨CD∗ζ,ζ⟩|. |
Taking the supremum over all unit vectors ξ,ζ, we obtain the desired inequality.
In Theorem 2.2, if we let A=B=C=D=S, we have:
Corollary 2.3. Let S∈B(H). Then
‖S∗S+SS∗‖2≤12[‖|S|4+|S∗|4‖+‖|S|4−|S∗|4‖]+w(|S∗|2|S|2)+2‖|S|2‖‖|S∗|2‖. |
In the proof of Theorem 2.2, if we let ξ=ζ, we have:
Corollary 2.4. Let A,B,C,D∈B(H). Then
w2(B∗A+DC∗)≤12[‖|A∗B|2+|CD∗|2‖+‖|A∗B|2−|CD∗|2‖]+w(DC∗A∗B)+2w(B∗A)w(DC∗). |
The following lemma gives a basic but useful extension for four operators of the Schwarz inequality due to Dragomir [8].
Lemma 2.5. Let A,B,C,D∈B(H). Then for ξ,ζ∈H we have the inequality
|⟨DCBAξ,ζ⟩|2≤⟨|BA|2ξ,ξ⟩⟨|(DC)∗|2ζ,ζ⟩. |
The equality case holds if and only if the vectors BAξ and C∗D∗ζ are linearly dependent in H.
The following lemma, known as the Hölder-McCarthy inequality, is a well-known conclusion derived from Jensen's inequality and the spectral theorem for positive operators (see [12]).
Lemma 2.6. Let T∈B(H), T≥0 and let ξ∈H be any unit vector. Then we have
(i) ⟨Tξ,ξ⟩r≤⟨Trξ,ξ⟩ for r≥1.
(ii) ⟨Trξ,ξ⟩≤⟨Tξ,ξ⟩r for 0<r≤1.
(iii) If T is invertible, then ⟨Tξ,ξ⟩r≤⟨Trξ,ξ⟩ for all r<0.
The next result is well known in the literature as the Mond-Pečarić inequality [18].
Lemma 2.7. If ψ is a convex function on a real interval J containing the spectrum of the self-adjoint operator T, then for any unit vector ξ∈H,
ψ(⟨Tξ,ξ⟩)≤⟨ψ(T)ξ,ξ⟩ | (2.4) |
and the reverse inequality holds if ψ is concave.
The forth lemma is a direct consequence of [2, Theorem 2.3].
Lemma 2.8. Let ψ be a non-negative non-decreasing convex function on [0,∞) and let T,S∈B(H) be positive operators. Then for any 0<μ<1,
‖ψ(μT+(1−μ)S)‖≤‖μψ(T)+(1−μ)ψ(S)‖. | (2.5) |
The above four lemmas admit the following more general result.
Theorem 2.9. Let A,B,C,D∈B(H). If ψ is a non-negative increasing convex function on [0,∞), then for any 0<μ<1,
ψ(w2(DCBA))≤‖μψ(|BA|2μ)+(1−μ)ψ(|(DC)∗|21−μ)‖. | (2.6) |
In particular,
w2r(DCBA)≤‖μ|BA|2rμ+(1−μ)|(DC)∗|2r1−μ‖ | (2.7) |
for all r≥1.
Proof. For any unit vector ξ∈H, we have
|⟨DCBAξ,ξ⟩|2≤⟨|BA|2ξ,ξ⟩⟨|(DC)∗|2ξ,ξ⟩(by Lemma (2.5))≤⟨|BA|2μξ,ξ⟩μ⟨|(DC)∗|21−μξ,ξ⟩1−μ(by Lemma 2.4 for concavity ofψ(t)=tμfor0<μ<1)≤μ⟨|BA|2μξ,ξ⟩+(1−μ)⟨|(DC)∗|21−μξ,ξ⟩(by weighted arithmetic-geometric mean inequality ). |
Taking the supremum over ξ∈H with ‖ξ‖=1, we infer that
w2(DCBA)≤‖μ|BA|2μ+(1−μ)|(DC)∗|21−μ‖. | (2.8) |
On account of assumptions on ψ, we can write
ψ(w2(DCBA))≤ψ(‖μ|BA|2μ+(1−μ)|(DC)∗|21−μ‖)≤‖μψ(|BA|2μ)+(1−μ)ψ(|(DC)∗|21−μ)‖(by Lemma 2.5). |
The inequality (2.7) follows directly from (2.6) by taking ψ(t)=tr (r≥1).
In the following result, we want to improve (1.9) under certain mild situations. We'll need the arithmetic-geometric mean inequality refinement [24] to do this.
Lemma 2.10. Suppose that μ,ν>0 and positive real numbers δ,Δ satisfy
min{μ,ν}≤δ<Δ≤max{μ,ν}. |
Then
Δ+δ2√δΔ√μν≤μ+ν2. |
The following lemma is very useful in the proof of the next result.
Lemma 2.11. Let ψ be a non-negative increasing convex function on [0,∞), ψ(0)=0 and α∈[0,1]. Then ψ(αt)≤αψ(t).
Theorem 2.12. Let A,B,C,D∈B(H) and let ψ be a non-negative increasing convex function on [0,∞). If
0<|BA|2≤δ<Δ≤|(DC)∗|2 |
or
0<|(DC)∗|2≤δ<Δ≤|BA|2, |
then
ψ(w(DCBA))≤√δΔδ+Δ‖ψ(|BA|2)+ψ(|(DC)∗|2)‖. | (2.9) |
Proof. It follows from Lemma 2.5 that
|⟨DCBAξ,ξ⟩|≤√⟨|BA|2ξ,ξ⟩⟨|(DC)∗|2ξ,ξ⟩. | (2.10) |
≤√ΔδΔ+δ[⟨|BA|2ξ,ξ⟩+⟨|(DC)∗|2ξ,ξ⟩]=√ΔδΔ+δ⟨(|BA|2+|(DC)∗|2)ξ,ξ⟩. | (2.11) |
Combining (2.10) and (2.11), we obtain
|⟨DCBAξ,ξ⟩|≤√ΔδΔ+δ⟨(|BA|2+|(DC)∗|2)ξ,ξ⟩. | (2.12) |
Taking the supremum over ξ∈H with ‖ξ‖=1, we infer that
w(DCBA)≤√ΔδΔ+δ‖|BA|2+|(DC)∗|2‖. |
Now, since ψ is a non-negative increasing convex function, we have
ψ(w(DCBA))≤ψ(2√ΔδΔ+δ‖|BA|2+|(DC)∗|22‖)≤2√ΔδΔ+δψ(‖|BA|2+|(DC)∗|22‖)(by Lemma 2.11 becauseα=2√ΔδΔ+δ≤1)≤2√ΔδΔ+δ‖ψ(|BA|2+|(DC)∗|22)‖≤√ΔδΔ+δ‖ψ(|BA|2)+ψ(|(DC)∗|2)‖(by Lemma 2.8). |
As an applications of Theorem 2.12, we have:
Corollary 2.13. Let T∈B(H), α,β≥0 with α+β≥1 and let ψ be a non-negative increasing convex function on [0,∞). If
0<|T|2β≤δ<Δ≤|T∗|2α |
or
0<|T∗|2α≤δ<Δ≤|T|2β, |
then
ψ(w(T|T|β−1T|T|α−1))≤√ΔδΔ+δ‖ψ(|T|2β)+ψ(|T∗|2α)‖. | (2.13) |
Remark 2.14. Following (2.9) we list here some particular inequalities of interest.
(i) If we let ψ(t)=tr (r≥1), we have
wr(DCBA)≤√ΔδΔ+δ‖|BA|2r+|(DC)∗|2r‖, |
whenever
0<|BA|2≤δ<Δ≤|(DC)∗|2or0<|(DC)∗|2≤δ<Δ≤|BA|2. |
(ii) Letting D=S∗,A=T and let ψ(t)=tr (r≥1), we have
wr(T∗S)≤√ΔδΔ+δ‖|T|2r+|S|2r‖, |
whenever
0<|T|2≤δ<Δ≤|S|2or0<|S|2≤δ<Δ≤|T|2. |
(iii) Letting C=D=B=I and A=T and let ψ(t)=tr (r≥1), we have
wr(T)≤√ΔδΔ+δ‖|T|2r+I‖, |
whenever
0<|T|2≤δ<Δ≤MIor0<I≤δ<Δ≤|T|2. |
We give an example to clarify part (ⅱ) in Remark 2.14
Example 2.15. Let S=[3/21/21/23/2] and T=[1/2001/2] and r=2. A simple calculations show that S∗T=(34141434) and so w2(S∗T)=1, ‖|S|4+|T|4‖=25716=16.0625. If we take δ=0.3 and Δ=.4, then
w2(S∗T)=1≤√ΔδΔ+δ‖|S|4+|T|4‖=7.94. |
If A,B∈B(H) are positive, the geometric mean of A and B, denoted by A♯B, is defined as
A♯B=A12(A−12BA−12)12A12. |
For 0≤ν≤1, the ν-weighted geometric mean, denoted by A♯νB, is defined as
A♯νB=A12(A−12BA−12)1−νA12. |
The ν-weighted geometric mean was introduced by Kubo and Ando [11], and when ν=12 this is just the geometric mean. One can show that A♯νB=B♯1−νA for 0≤ν≤1. When A and B commute, A♯νB=AνB1−ν. The ν-weighted arithmetic mean of A and B, denoted by A∇νB, is defined as
A∇νB=(1−ν)A+νB. |
Theorem 2.16. Let A,B,C,D∈B(H), and let ψ be a non-negative increasing convex function on [0,∞). If for given m′,M′>0,
0<m′≤|BA|2≤|(DC)∗|2≤M′or0<m′≤|(DC)∗|2≤|BA|2≤M′, |
then
ψ(w(DCBA))≤12γ‖ψ(|BA|2)+ψ(|(DC)∗|2)‖, |
where
γ:=(1−18(1−1h′)2)−1≥1withh′=M′m′. |
To prove Theorem 2.16, we need the following result that established by Furuichi [9].
Corollary 2.17. Let 0≤ν≤1, −1≤r1<0, 0<r2≤1 and let T and S be strictly positive operators satisfying (i) 0<m≤T≤m′<M′≤S≤M or (ii) 0<m≤S≤m′<M′≤T≤M with h=Mm and h′=M′m′. Then
expr1(ν(1−ν)2(h−1h)2)T♯νS≤T∇νS≤expr2(ν(1−ν)2(h′−1)2)T♯νS. |
Proof of Theorem 2.16. From Corollary 2.17, we have
expr(ν(1−ν)2(1−1h′)2)T♯νS≤T∇νS |
for T,S>0 with m′,M′>0 satisfying 0<m′≤T≤S≤M′ or 0<m′≤S≤T≤M′, where expr(ξ):=(1+rξ)1/r, if 1+rξ>0, and it is undefined otherwise. Since expr(ξ) is decreasing in r∈[−1,0), the above inequality gives a tight lower bound when r=−1. After all, we have the scalar inequality:
γ√στ≤σ+τ2 |
for σ,τ>0 and m′,M′>0 such that 0<m′≤min{σ,τ}≤max{σ,τ}≤M′. Applying this inequality with a similar argument as in Theorem 2.12, we obtain the desired result.
Theorem 2.18. Let A,B,C,D∈B(H) 0<ν<1 and let ψ be a non-negative increasing convex function on [0,∞). Then
ψ(w2(DCBA))≤‖(1−ν)ψ(|BA|21−ν)+νψ(|(DC)∗|2ν)‖−rγ(ψ) | (2.14) |
where r=min{ν,1−ν} and
γ(ψ)=inf‖ξ‖=1{ψ(⟨|BA|21−νξ,ξ⟩)+ψ(⟨|(DC)∗|2νξ,ξ⟩)−2ψ(⟨(⟨|BA|21−νξ,ξ⟩+⟨|(DC)∗|2νξ,ξ⟩2)ξ,ξ⟩)}. | (2.15) |
Proof. We assume 0≤ν≤12. For each unit vector ξ∈H,
ψ(⟨((1−ν)|BA|21−ν+ν|(DC)∗|2ν)ξ,ξ⟩)+rγ(ψ)=ψ((1−ν)⟨|BA|21−νξ,ξ⟩+ν⟨|(DC)∗|2νξ,ξ⟩)+rγ(ψ)=ψ((1−2ν)⟨|BA|21−νξ,ξ⟩+2ν⟨(|BA|21−ν+|(DC)∗|2ν2)ξ,ξ⟩)+rγ(ψ)≤(1−2ν)ψ(⟨|BA|21−νξ,ξ⟩)+2νψ(⟨(|BA|21−ν+|(DC)∗|2ν2)ξ,ξ⟩)+rγ(ψ)(by convexity of ψ). |
Hence
ψ(⟨((1−ν)|BA|21−ν+ν|(DC)∗|2ν)ξ,ξ⟩)+rγ(ψ)≤(1−2ν)ψ(⟨|BA|21−νξ,ξ⟩)+2νψ(⟨(|BA|21−ν+|(DC)∗|2ν2)ξ,ξ⟩)+r(ψ(⟨|BA|21−νξ,ξ⟩)+ψ(⟨|(DC)∗|2νξ,ξ⟩)−2ψ(⟨(|BA|21−ν+|(DC)∗|2ν2)ξ,ξ⟩))(by inequality 2.15)≤(1−ν)ψ(⟨|BA|21−νξ,ξ⟩)+νψ(⟨|(DC)∗|2νξ,ξ⟩)≤⟨((1−ν)ψ(|BA|21−ν)+νψ(|(DC)∗|2ν))ξ,ξ⟩(by Lemma 2.7). |
If we apply similar arguments for 12≤ν≤1, then we can write
ψ(⟨((1−ν)|BA|21−ν+ν|(DC)∗|2ν)ξ,ξ⟩)≤‖((1−ν)ψ(|BA|21−ν)+νψ(|(DC)∗|2ν))ξ,ξ‖−rγ(ψ). |
We know that if T∈B(H) is a positive operator, then ‖T‖=sup‖ξ‖=1⟨Tξ,ξ⟩. By using this, the continuity and the increase of ψ, we have
ψ(‖(1−ν)|BA|21−ν+ν|(DC)∗|2ν‖)=ψ(sup‖ξ‖=1⟨((1−ν)|BA|21−ν+ν|(DC)∗|2ν)ξ,ξ⟩)=sup‖ξ‖=1ψ(⟨((1−ν)|BA|21−ν+ν|(DC)∗|2ν)ξ,ξ⟩)≤sup‖ξ‖=1⟨((1−ν)ψ(|BA|21−ν)+νψ(|(DC)∗|2ν))ξ,ξ⟩−rγ(ψ)=‖(1−ν)ψ(|BA|21−ν)+νψ(|(DC)∗|2ν)‖−rγ(ψ). |
On the other hand, if X∈B(H), and if ψ is a non-negative increasing function on [0,∞), then ψ(‖X‖)=‖ψ(|X|)‖.
Now from the proof of Theorem 2.9, we have
ψ(w2(DCBA))≤ψ(‖(1−ν)|BA|21−ν+ν|(DC)∗|2ν‖)≤‖(1−ν)ψ(|BA|21−ν)+νψ(|(DC)∗|2ν)‖−rγ(ψ). |
This completes the proof.
Inequality (2.18) includes several numerical radius inequalities as special cases.
Corollary 2.19. Let T∈B(H), α+β≥1, 0<ν<1 and let ψ be a non-negative increasing convex function on [0,∞). Then
ψ(w2(T|T|β−1T|T|α−1))≤‖(1−ν)ψ(|T|2β1−ν)+νψ(|T∗|2αν)‖−rγ(ψ) | (2.16) |
where r and γ(ψ) as in Theorem 2.18.
Proof. Let T=U|T| be the polar decomposition of the operator T, where U is partial isometry and the kernel ker(U)=N(|T|). If we take D=U,C=|T|β,B=U and A=|T|α, we have
DCBA=T|T|β−1T|T|α−1,|BA|2=|T|2αand|(DC)∗|2=|T∗|2β. |
So, the result follows by Theorem 2.18.
Corollary 2.20. Let T∈B(H), α,β≥0 such that α+β≥2, 0<ν<1 and let ψ be a non-negative increasing convex function on [0,∞). Then
ψ(w2(T∗|T∗|α+β−2T))≤‖(1−ν)ψ(|T|2β1−ν)+νψ(|T|2αν)‖−rγ(ψ) | (2.17) |
where r and γ(ψ) as in Theorem 2.18.
Proof. Let T∗=U|T∗| be the polar decomposition of the operator T∗, where U is partial isometry and the kernel ker(U)=N(|T|). Then T=|T∗|U∗. If we take D=U,C=|T∗|β,B=|T∗|α and A=U∗, we have
DCBA=U|T∗|β|T∗|αU∗=T∗|T∗|α+β−2T,|BA|2=|T|2αand|(DC)∗|2=|T|2β. |
So, the result follows by Theorem 2.18.
Corollary 2.21. Let T∈B(H), α,β≥0, 0<ν<1 and let ψ be a non-negative increasing convex function on [0,∞). Then
ψ(w2(|T|αT2|S|β))≤‖(1−ν)ψ(|T|2β+21−ν)+νψ(|T∗|T|α|2ν)‖−rγ(ψ) | (2.18) |
where r and γ(ψ) as in Theorem 2.18.
Proof. In Theorem 2.18, if we let D=|T|α,C=T,B=T and A=|T|β, then
|BA|2=A∗|B|2A=|T|β|T|2|T|α=|T|2β+2|(DC)∗|2=D|C∗|2D∗=|T|α|T∗|2|T|α=|T|αTT∗|T|α=|T|αT(|T|αT)∗=|(|T|αT)∗|2=|T∗|T|α|2, |
so the result:
Inequalities for numerical radius and operator norm have now been given, although in the context of superquadratic functions. Remember that a function ψ:[0,∞)⟶R is termed superquadratic if there exists a constant Cx∈R such that
ψ(t)≥ψ(ξ)+Cξ(t−ξ)+ψ(|t−ξ|) | (2.19) |
for all t≥0. If −ψ is superquadratic, we say ψ is subquadratic. As a result, for a superquadratic function, ψ must be above its tangent line plus a translation of ψ. Superquadratic functions appear to be stronger than convex functions at first glance, however they may be deemed weaker if ψ has negative values. If ψ is superquadratic and non-negative, then ψ is increasing and convex, and if Cξ is equal to (2.19), then Cξ≥0 [1].
Theorem 2.22. Let A∈B(H) and let ψ be a non-negative superquadratic function. Then
ψ(w(A))≤‖ψ(|A|)‖−inf‖ξ‖=1‖ψ(||A|−‖A‖|)12‖2. | (2.20) |
Proof. Letting ξ=‖A‖ in the inequality (2.19), we get
ψ(t)≥ψ(‖A‖)+C‖A‖(t−‖A‖)+ψ(|t−‖A‖|). | (2.21) |
By applying functional calculus for the operator |A| in (2.21) we get
ψ(|A|)≥ψ(‖A‖)+C‖A‖(|A|−‖A‖)+ψ(||A|−‖A‖|). | (2.22) |
Hence,
⟨ψ(|A|)ξ,ξ⟩≥ψ(‖A‖)+C‖A‖(⟨|A|ξ,ξ⟩−‖A‖)+⟨ψ(||A|−‖A‖|)ξ,ξ⟩. |
Consequently,
⟨ψ(|A|)ξ,ξ⟩≥ψ(‖A‖)+C‖A‖(⟨|A|ξ,ξ⟩−‖A‖)+‖ψ(||A|−‖A‖|)12x‖2 | (2.23) |
for every unit vector ξ∈H.
Now, by taking supremum over ξ∈H with ‖ξ‖=1 in (2.23), and using the fact w(|A|)=‖A‖≥w(A), and ψ is increasing, we deduce the desired inequality (2.20).
Applying Theorem 2.22 to the superquadratic function ψ(t)=tr (r≥2), we reach the following corollary:
Corollary 2.23. Let A∈B(H). Then for any r≥2,
wr(A)≤‖A‖r−inf‖ξ‖=1‖||A|−‖A‖|r2‖2. |
In particular
w(A)≤√‖A‖2−inf‖ξ‖=1‖||A|−‖A‖|‖2≤‖A‖. |
In this section, We provide various inequalities involving power numerical radii and the usual operator norms of Hilbert space operators. In particular, if Ai,Bi and Xi are bounded linear operators (i=1,2,⋯n∈N), then we estimate the numerical radius to ∑mi=1XiAmiBi for some m∈N.
The following lemma is a straightforward application of Jensen's inequality about the convexity or concavity of certain power functions. Schlömilch's inequality for the weighted means of non-negative real numbers is a specific example of this inequality.
Lemma 3.1. Let σ,τ>0 and 0≤α≤1. Then
σατ1−α≤ασ+(1−α)τ≤(ασr+(1−α)τr)1rforr≥1. | (3.1) |
The following result was established by Kittaneh and Manasrah [16], which is a refinement of the scalar Young inequality.
Lemma 3.2. Let σ,τ>0, and p,q>1 such that 1p+1q=1. Then
στ+r0(σp2−τq2)2≤σpp+τqq, | (3.2) |
where r0=min{1p,1q}.
Manasrah and Kittaneh have generalized (3.2) in [17], as follows:
Lemma 3.3. Let σ,τ>0, and p,q>1 such that 1p+1q=1. Then for m=1,2,⋯, we have
(σ1pτ1q)m+rm0(σm2−τm2)2≤(σrp+τrq)mr,r≥1 | (3.3) |
where r0=min{1p,1q}. In particular, if p=q=2, then
(√στ)m+12m(σm2−τm2)2≤2−mr(σr+τr)mr. | (3.4) |
For m=1, and p=q=2, we have
√στ+12(√σ−√τ)2≤2−1r(σr+τr)1r. | (3.5) |
The convexity of the function ψ(t)=tr, r≥1 leads to the following lemma, which deals with positive real numbers.
Lemma 3.4. Let σi,i=1,⋯,n be positive real numbers. Then
(n∑i=1σi)r≤nr−1n∑i=1σriforr≥1. | (3.6) |
Theorem 3.5. Let Ai,Ci,Di∈B(H), (i=1,⋯,n), m∈N. Then
wr(n∑i=1DiCmiAi)≤nr−12mm∑j=1‖n∑i=1(|CjiAi|2r+|(DiCm−ji)∗|2r)‖ | (3.7) |
for all r≥1.
Proof. Let ξ∈H be any unit vector. Then by Lemma 2.5, Lemma 3.1 and Lemma 3.4, we obtain that
|⟨n∑i=1DiCmiAiξ,ξ⟩|r=1mm∑j=1|⟨n∑i=1DiCm−jiCjiAiξ,ξ⟩|r≤1mm∑j=1(n∑i=1|⟨DiCm−jiCjiAiξ,ξ⟩|)r. |
This implies that
|⟨n∑i=1DiCmiAiξ,ξ⟩|r≤nr−1mm∑j=1n∑i=1|⟨DiCm−jiCjiAiξ,ξ⟩|r≤nr−1mm∑j=1n∑i=1⟨|CjiAi|2ξ,ξ⟩r2⟨|(DiCm−ji)∗|2ξ,ξ⟩r2≤nr−1mm∑j=1n∑i=1⟨|CjiAi|2rξ,ξ⟩12⟨|(DiCm−ji)∗|2rξ,ξ⟩12≤nr−12mm∑j=1n∑i=1⟨(|CjiAi|2r+|(DiCm−ji)∗|2r)ξ,ξ⟩. |
Taking the supremum over all unit vectors ξ∈H, we get the result.
For Di=Ai=I in inequality (3.7), we have:
Corollary 3.6. Let Ci∈B(H), (i=1,⋯,n), m∈N. Then
wr(n∑i=1Cmi)≤nr−12mm∑j=1‖n∑i=1(|Cji|2r+|(Cm−ji)∗|2r)‖ | (3.8) |
for all r≥1.
The following is an example of how Corollary 3.6 may be used. It entails a numerical radius inequality for operator powers.
Corollary 3.7. Let C∈B(H) and m∈N. Then for all r≥1, we have
wr(Cm)≤12mm∑j=1‖|Cj|2r+|(Cm−j)∗|2r‖. |
Theorem 3.8. Let Ai,Ci,Di∈B(H), (i=1,⋯,n), m∈N and 0≤α≤1. Then
w(n∑i=1DiCmiAi)≤1mm∑j=1n∑i=1‖α|CjiAi|2rα+(1−α)|(DiCm−ji)∗|2r1−α‖12r | (3.9) |
for all r≥1.
Proof. Let ξ∈H be any unit vector. Then by Lemmas 2.5, 3.1 and 3.4, we obtain
|⟨n∑i=1DiCmiAiξ,ξ⟩|=1mm∑j=1|⟨n∑i=1DiCm−jiCjiAiξ,ξ⟩|≤1mm∑j=1n∑i=1⟨|CjiAi|2ξ,ξ⟩12⟨|(DiCm−ji)∗|2ξ,ξ⟩12. |
Hence,
|⟨n∑i=1DiCmiAiξ,ξ⟩|≤1mm∑j=1n∑i=1(⟨|CjiAi|2ξ,ξ⟩⟨|(DiCm−ji)∗|2ξ,ξ⟩)12≤1mm∑j=1n∑i=1(⟨|CjiAi|2αξ,ξ⟩α⟨|(DiCm−ji)∗|21−αξ,ξ⟩1−α)12≤1mm∑j=1n∑i=1(α⟨|CjiAi|2αξ,ξ⟩r+(1−α)⟨|(DiCm−ji)∗|21−αξ,ξ⟩r)12r≤1mm∑j=1n∑i=1⟨(α|CjiAi|2rα+(1−α)|(DiCm−ji)∗|2r1−α)ξ,ξ⟩12r. |
Taking the supremum over all unit vectors ξ∈H, we deduce the desired result.
Theorem 3.9. Let Ai,Ci,Di∈B(H), (i=1,⋯,n), m∈N and p,q>1 such that 1p+1q=1. Then
w2(n∑i=1DiCmiAi)≤1mm∑j=1‖n∑i=11p|CjiAi|2p+1q|(DiCm−ji)∗|2q‖−r0inf‖ξ‖=1ψ(ξ), | (3.10) |
where r0=min{1p,1q} and
ψ(ξ)=nmm∑j=1n∑i=1(⟨||CjiAi|2ξ,ξ⟩p2−⟨|(DiCm−ji)∗|ξ,ξ⟩q2)2. |
Proof. Let ξ∈H be any unit vector. Then by Lemmas 2.5, 3.2 and 3.4, we obtain
|⟨n∑i=1DiCmiAiξ,ξ⟩|2=1mm∑j=1|⟨n∑i=1DiCm−jiCjiAiξ,ξ⟩|2≤nmm∑j=1n∑i=1|⟨DiCm−jiCjiAiξ,ξ⟩|2≤nmm∑j=1n∑i=1⟨|CjiAi|2ξ,ξ⟩⟨|(DiCm−ji)∗|2ξ,ξ⟩≤nmm∑j=1n∑i=1(1p⟨|CjiAi|2pξ,ξ⟩+1q⟨|(DiCm−ji)∗|2qξ,ξ⟩)−nr0mm∑j=1n∑i=1(⟨|CjiAi|2ξ,ξ⟩p2−⟨|(DiCm−ji)∗|2ξ,ξ⟩q2)2. |
This implies that
|⟨n∑i=1DiCmiAiξ,ξ⟩|2≤nmm∑j=1n∑i=1⟨(1p|CjiAi|2p+1q|(DiCm−ji)∗|2q)ξ,ξ⟩−nr0mm∑j=1n∑i=1(⟨|CjiAi|2ξ,ξ⟩p2−⟨|(DiCm−ji)∗|2ξ,ξ⟩q2)2. |
Taking the supremum over all unit vectors ξ∈H, we deduce the desired result.
Theorem 3.10. Let Ai,Ci,Di∈B(H), (i=1,⋯,n), m∈N and p,q>1 such that 1p+1q=1 and k=1,2,⋯. Then
w2k(n∑i=1DiCmiAi)≤n2k−1mm∑j=1n∑i=1‖1p|CjiAi|2rp+1q|(DiCm−ji)∗|2qr‖kr−rk0inf‖ξ‖=1η(ξ), | (3.11) |
where r0=min{1p,1q} and
η(ξ)=n2k−1mm∑j=1n∑i=1(⟨|CjiAi|2pξ,ξ⟩k2−⟨|(DiCm−ji)∗|2qξ,ξ⟩k2)2 |
for all r≥1.
Proof. Let ξ∈H be any unit vector. Then by Lemmas 2.5, 3.3 and 3.4, we obtain
|⟨n∑i=1DiCmiAiξ,ξ⟩|2k=1mm∑j=1|⟨n∑i=1DiCm−jiCjiAiξ,ξ⟩|2k≤n2k−1mm∑j=1n∑i=1|⟨DiCm−jiCjiAiξ,ξ⟩|2k. |
This implies that
|⟨n∑i=1DiCmiAiξ,ξ⟩|2k≤n2k−1mm∑j=1n∑i=1(⟨|CjiAi|2ξ,ξ⟩⟨|(DiCm−ji)∗|2ξ,ξ⟩)k≤n2k−1mm∑j=1n∑i=1(⟨|CjiAi|2ppξ,ξ⟩⟨|(DiCm−ji)∗|2qqξ,ξ⟩)k≤n2k−1mm∑j=1n∑i=1(⟨|CjiAi|2pξ,ξ⟩1p⟨|(DiCm−ji)∗|2qξ,ξ⟩1q)k≤n2k−1mm∑j=1n∑i=1⟨(1p|CjiAi|2rp+1q|(DiCm−ji)∗|2qr)ξ,ξ⟩kr−n2k−1rk0mm∑j=1n∑i=1(⟨|CjiAi|2pξ,ξ⟩k2−⟨|(DiCm−ji)∗|2qξ,ξ⟩k2)2. |
Taking the supremum over all unit vectors ξ∈H, we deduce the desired result.
For k=1, and p=q=2, we have:
Corollary 3.11. Let Ai,Ci,Di∈B(H), (i=1,⋯,n), m∈N. Then
w2(n∑i=1DiCmiAi)≤n2−1rmm∑j=1n∑i=1‖|CjiAi|4r+|(DiCm−ji)∗|4r‖1r−12inf‖ξ‖=1η(ξ), | (3.12) |
where
η(ξ)=nmm∑j=1n∑i=1(⟨|CjiAi|4ξ,ξ⟩12−⟨|(DiCm−ji)∗|4ξ,ξ⟩12)2 |
for all r≥1.
The following lemma is an extended variant of the mixed Schwarz inequality, which has been shown by Kittaneh [12] and is highly relevant in the following results.
Lemma 3.12. Let A∈B(H), and ψ and ϕ be non-negative functions on [0,∞) which are continuous such that ψ(t)ϕ(t)=t for all t∈[0,∞). Then
|⟨Aξ,ζ⟩|≤‖ψ(|A|)ξ‖‖ϕ(|A∗|)ζ‖, | (3.13) |
for all ξ,ζ∈H.
The next results give improvements of the inequality (1.10).
Theorem 3.13. Let Ai,Bi,Xi∈B(H), (i=1,⋯,n), m∈N, p,q>1 with 1p+1q=1 and let ψ and ϕ be as in Lemma 3.12. Then for all r≥1, we have
w2r(n∑i=1XiAmiBi)≤n2r−1mm∑j=1‖n∑i=11pSpri,j+1qTqri,j‖−r0inf‖ξ‖=1ρ(ξ), | (3.14) |
where r0=min{1p,1q}, Si,j=Xiψ2(|Aj∗i|)X∗i, Ti,j=(Am−jiBi)∗ϕ2(|Aji|)Am−jiBi and
ρ(ξ)=n2r−1mm∑j=1n∑i=1(⟨Sri,jξ,ξ⟩p2−⟨Tri,jξ,ξ⟩q2)2. |
Proof. Let ξ∈H be any unit vector. Then by Lemma 3.3, Lemma 3.4 and Lemma 3.12, we obtain
|n∑i=1⟨XiAmiBiξ,ξ⟩|2r=1mm∑j=1|n∑i=1⟨XiAm−jiAjiBiξ,ξ⟩|2r≤1mm∑j=1(n∑i=1|⟨XiAm−jiAjiBiξ,ξ⟩|)2r≤n2r−1mm∑j=1n∑i=1|⟨XiAm−jiAjiBiξ,ξ⟩|2r |
and so
|n∑i=1⟨XiAmiBiξ,ξ⟩|2r≤n2r−1mm∑j=1n∑i=1|⟨Aj∗iX∗ix,Am−jiBix⟩|2r≤n2r−1mm∑j=1n∑i=1‖ψ(|Aj∗i|)X∗ix‖2r‖ϕ(|Aji|)Am−jiBix‖2r≤n2r−1mm∑j=1n∑i=1⟨Si,jξ,ξ⟩r⟨Ti,jξ,ξ⟩r≤n2r−1mm∑j=1n∑i=1⟨Sri,jξ,ξ⟩⟨Tri,jξ,ξ⟩. |
Hence,
|n∑i=1⟨XiAmiBiξ,ξ⟩|2r≤n2r−1mm∑j=1n∑i=1⟨(1pSpri,j+1qTqri,j)ξ,ξ⟩−r0n2r−1mm∑j=1n∑i=1(⟨Sri,jξ,ξ⟩p2−⟨Tri,jξ,ξ⟩q2)2. |
Taking the supremum over all unit vectors ξ∈H, we deduce the desired result.
Inequality (3.17) includes several numerical radius inequalities as special cases. Samples of inequalities are demonstrated in what follows, for ψ(t)=tλ and ϕ(t)=t1−λ, λ∈(0,1) in inequality (3.17).
Corollary 3.14. Let Ai,Bi,Xi∈B(H), (i=1,⋯,n), m∈N, p,q>1 with 1p+1q=1 and let ψ and g be as in Lemma 3.12. Then for all r≥1, we have
w2r(n∑i=1XiAmiBi)≤n2r−1mm∑j=1‖n∑i=11pSpri,j+1qTqri,j‖−r0inf‖ξ‖=1ρ(ξ), | (3.15) |
where r0=min{1p,1q}, Si,j=Xi|Aj∗i|2λX∗i, Ti,j=(Am−jiBi)∗|Aji|2(1−λ)Am−jiBi and
ρ(ξ)=n2r−1mm∑j=1n∑i=1(⟨Sri,jξ,ξ⟩p2−⟨Tri,jξ,ξ⟩q2)2. |
For Xi=Bi=I in inequality (3.14) we get the following numerical radius inequality.
Corollary 3.15. Let Ai,∈B(H), (i=1,⋯,n), m∈N, p,q>1 with 1p+1q=1 and let ψ and g be as in Lemma 3.12. Then for all r≥1, we have
w2r(n∑i=1Ami)≤n2r−1mm∑j=1‖n∑i=11pSpri,j+1qTqri,j‖−r0inf‖ξ‖=1ρ(ξ), | (3.16) |
where r0=min{1p,1q}, Si,j=ψ2(|(Aji)∗|), Ti,j=(Am−ji)∗ϕ2(|Aji|)Am−ji and
ρ(ξ)=n2r−1mm∑j=1n∑i=1(⟨Sri,jξ,ξ⟩p2−⟨Tri,jξ,ξ⟩q2)2. |
An application of Corollary 3.15 can be seen in the following result. It involves a numerical radius inequality for the powers of operator.
Corollary 3.16. Let A∈B(H), m∈N, p,q>1 with 1p+1q=1 and let ψ(t)=tλ and ϕ(t)=t1−λ. Then for all r≥1, we have
w2r(Am)≤1mm∑j=1‖1pSprj+1qTqrj‖−r0inf‖ξ‖=1ρ(ξ), | (3.17) |
where r0=min{1p,1q}, Sj=|(Aj)∗|2λ, Tj=(Am−j)∗|Aj|2(1−λ)Am−j and
ρ(ξ)=1mm∑j=1(⟨Srjξ,ξ⟩p2−⟨Trjξ,ξ⟩q2)2. |
Theorem 3.17. Let Ai,Bi,Xi∈B(H), (i=1,⋯,n), m,k∈N, p,q>1 with 1p+1q=1 and let ψ and ϕ be as in Lemma 3.12. Then for all r≥1, we have
w2k(n∑i=1XiAmiBi)≤n2k−1mm∑j=1n∑i=1‖1pSpri,j+1qTqri,j‖kr−rk0inf‖ξ‖=1ω(ξ), | (3.18) |
where r0=min{1p,1q}, Si,j=Xiψ2(|Aj∗i|)X∗i, Ti,j=(Am−jiBi)∗ϕ2(|Aji|)Am−jiBi and
ω(ξ)=n2k−1mm∑j=1n∑i=1(⟨Spi,jξ,ξ⟩k2−⟨Tqi,jξ,ξ⟩k2)2. |
Proof. Let ξ∈H be any unit vector. Then by Lemmas 3.3, 3.4 and 3.12, we obtain
|n∑i=1⟨XiAmiBiξ,ξ⟩|2k=1mm∑j=1|n∑i=1⟨XiAm−jiAjiBiξ,ξ⟩|2k≤1mm∑j=1(n∑i=1|⟨XiAm−jiAjiBiξ,ξ⟩|)2k≤n2k−1mm∑j=1n∑i=1|⟨XiAm−jiAjiBiξ,ξ⟩|2k≤n2k−1mm∑j=1n∑i=1|⟨Aj∗iX∗ix,Am−jiBix⟩|2k |
this implies that
|n∑i=1⟨XiAmiBiξ,ξ⟩|2k≤n2k−1mm∑j=1n∑i=1‖ψ(|Aj∗i|)X∗ix‖2k‖ϕ(|Aji|)Am−jiBix‖2k≤n2k−1mm∑j=1n∑i=1(⟨Spi,jξ,ξ⟩1p⟨Tqi,jξ,ξ⟩1q)k≤n2k−1mm∑j=1n∑i=1(⟨1pSpri,jξ,ξ⟩+1q⟨Tqri,jξ,ξ⟩)kr−rk0n2k−1mm∑j=1n∑i=1(⟨Spi,jξ,ξ⟩k2−⟨Tqi,jξ,ξ⟩k2)2. |
Hence,
|n∑i=1⟨XiAmiBiξ,ξ⟩|2k≤n2r−1mm∑j=1n∑i=1⟨(1pSpri,j+1qTqri,j)ξ,ξ⟩kr−rk0n2k−1mm∑j=1n∑i=1(⟨Spi,jξ,ξ⟩k2−⟨Tqi,jξ,ξ⟩k2)2. |
Taking the supremum over all unit vectors ξ∈H, we deduce the desired result.
If we take k=1 and p=q, we have:
Corollary 3.18. Let Ai,Bi,Xi∈B(H), (i=1,⋯,n), m∈N, and let ψ and ϕ be as in Lemma 3.12. Then for all r≥1, we have
w2(n∑i=1XiAmiBi)≤nm21rm∑j=1n∑i=1‖S2ri,j+T2ri,j‖1r−12inf‖ξ‖=1ω(ξ), | (3.19) |
where Si,j=Xiψ2(|Aj∗i|)X∗i, Ti,j=(Am−jiBi)∗ϕ2(|Aji|)Am−jiBi and
ω(ξ)=nmm∑j=1n∑i=1(⟨S2i,jξ,ξ⟩12−⟨T2i,jξ,ξ⟩12)2. |
In this work, we have derived a series of precise inequalities involving the standard operator norms of Hilbert space operators and powers of the numerical radii. These inequalities build upon traditional convexity inequalities for nonnegative real numbers and extend earlier numerical radius inequalities in the context of operator theory.
As part of future work, further investigations could explore the practical implications and applications of these inequalities in the context of operator theory and related areas of mathematics and physics.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We thank the referees for their valuable comments and helpful suggestions.
The authors declare no conflict of interests.
[1] | S. Abramovich, G. Jameson, G. Sinnamon, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie, 47 (2004), 3–14. |
[2] |
J. S. Aujla, F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217–233. https://doi.org/10.1016/S0024-3795(02)00720-6 doi: 10.1016/S0024-3795(02)00720-6
![]() |
[3] |
M. A. Dolat, K. A. Zoubi, Numerical radius inequalities for Hilbert space operators, J. Math. Ineq., 10 (2016), 1041–1049. http://dx.doi.org/10.7153/jmi-10-83 doi: 10.7153/jmi-10-83
![]() |
[4] |
S. S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl., 419 (2006), 256–264. https://doi.org/10.1016/j.laa.2006.04.017 doi: 10.1016/j.laa.2006.04.017
![]() |
[5] |
S. S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2006), 255–262. https://doi.org/10.1017/S0004972700038831 doi: 10.1017/S0004972700038831
![]() |
[6] |
S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces, Tamkang J. Math., 39 (2008). https://doi.org/10.5556/j.tkjm.39.2008.40 doi: 10.5556/j.tkjm.39.2008.40
![]() |
[7] | S. S. Dragomir, Power inequalities for the numarical radius of a product of two operators in Hilbert spaces, Res. Rep. Collect., 11 (2008), 269–278. |
[8] |
S. S. Dragomir, Some inequalities generalizing Kato's and Furuta's results, Filomat, 28 (2014), 179–195. https://doi.10.2298/FIL1401179D doi: 10.2298/FIL1401179D
![]() |
[9] |
S. Furuichi, Further improvements of Young inequality, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113 (2019), 255–266. https://doi.org/10.1007/s13398-017-0469-5 doi: 10.1007/s13398-017-0469-5
![]() |
[10] | K. Gustafson, D. Rao, Numerical Range, New York: Springer-Verlage, 1997. https://doi.org/10.1007/978-1-4613-8498-4_1 |
[11] |
F. Kubo, T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205–224. https://doi.org/10.1007/BF01371042 doi: 10.1007/BF01371042
![]() |
[12] |
F. Kittaneh, Notes on some inequalities for Hilbert Space operators, Publ Res. Inst. Math. Sci., 24 (1988), 283–293. https://doi.org/10.2977/PRIMS/1195175202 doi: 10.2977/PRIMS/1195175202
![]() |
[13] |
F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11–17. https://doi.org/10.4064/sm158-1-2 doi: 10.4064/sm158-1-2
![]() |
[14] | F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73–80. http://eudml.org/doc/284514 |
[15] |
F. Kittaneh, M. El-Haddad, Numerical radius inequalities for Hilbert space operators Ⅱ, Studia Math., 182 (2007), 133–140. https://doi.org/10.4064/sm182-2-3 doi: 10.4064/sm182-2-3
![]() |
[16] |
F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361 (2010), 262–269. https://doi.org/10.1016/j.jmaa.2009.08.059 doi: 10.1016/j.jmaa.2009.08.059
![]() |
[17] |
Y. A. Manasrah, F. Kittaneh, A generalization of two refined Young inequalities, Positivity, 19 (2015), 757–768. https://doi.org/10.1007/s11117-015-0326-8 doi: 10.1007/s11117-015-0326-8
![]() |
[18] | B. Mond, J. Pečarić, On Jensen's inequality for operator convex functions, Houston J. Math., 21 (1995), 739–753. |
[19] |
M. H. M. Rashid, Power inequalities for the numerical radius of operators in Hilbert spaces, Khayyam J. Math., 5 (2019), 15–29. https://doi.org/10.22034/kjm.2019.84204 doi: 10.22034/kjm.2019.84204
![]() |
[20] | M. H. M. Rashid, N. H. Altaweel, Numerical range of generalized aluthge transformation, Informatica J., 32 (2021), 2–11. |
[21] |
M. H. M. Rashid, N. H. Altaweel, Some generalized numerical radius inequalities for Hilbert space operators, J. Math. Ineq., 16 (2022), 541–560. http://dx.doi.org/10.7153/jmi-2022-16-39 doi: 10.7153/jmi-2022-16-39
![]() |
[22] |
M. H. M. Rashid, Refinements of some numerical radius inequalities for Hilbert space operators, Tamkang J.Math., 54 (2023), 155–173. https://doi.org/10.5556/j.tkjm.54.2023.4061 doi: 10.5556/j.tkjm.54.2023.4061
![]() |
[23] |
K. Shebrawi, H. Albadwi, Numerical radius and operator norm inequalities, J. Inequal. Appl., 11 (2009), 492154. https://doi.org/10.1155/2009/492154 doi: 10.1155/2009/492154
![]() |
[24] | S. Tafazoli, H. R. Moradi, S. Furuichi, P. Harikrishnan, Further inequalities for the numerical radius of Hilbert space operators, J. Math. Ineq., 13 (2019), 955–967. |
1. | Waqar Afzal, Luminita-Ioana Cotîrlă, New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings, 2025, 17, 2073-8994, 146, 10.3390/sym17010146 |