Research article Special Issues

An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality

  • We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if Ai,Bi,XiB(H) (i=1,2,,n), mN, p,q>1 with 1p+1q=1 and ϕ and ψ are non-negative functions on [0,) which are continuous such that ϕ(t)ψ(t)=t for all t[0,), then

    w2r(ni=1XiAmiBi)n2r1mmj=1ni=11pSpri,j+1qTqri,jr0infξ=1ρ(ξ),

    where r0=min{1p,1q}, Si,j=Xiϕ2(|Aji|)Xi, Ti,j=(AmjiBi)ψ2(|Aji|)AmjiBi and

    ρ(ξ)=n2r1mmj=1ni=1(Sri,jξ,ξp2Tri,jξ,ξq2)2.

    Citation: Mohammad H. M. Rashid, Feras Bani-Ahmad. An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality[J]. AIMS Mathematics, 2023, 8(11): 26384-26405. doi: 10.3934/math.20231347

    Related Papers:

    [1] Yaser Khatib, Stanford Shateyi . Improvement of inequalities related to powers of the numerical radius. AIMS Mathematics, 2024, 9(7): 19089-19103. doi: 10.3934/math.2024930
    [2] Waqar Afzal, Khurram Shabbir, Thongchai Botmart, Savin Treanţă . Some new estimates of well known inequalities for $ (h_1, h_2) $-Godunova-Levin functions by means of center-radius order relation. AIMS Mathematics, 2023, 8(2): 3101-3119. doi: 10.3934/math.2023160
    [3] Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906
    [4] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
    [5] Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini . A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671
    [6] Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Khalil Hadi Hakami, Hamad Zogan . An analysis of fractional integral calculus and inequalities by means of coordinated center-radius order relations. AIMS Mathematics, 2024, 9(11): 31087-31118. doi: 10.3934/math.20241499
    [7] Najla Altwaijry, Cristian Conde, Silvestru Sever Dragomir, Kais Feki . Further norm and numerical radii inequalities for operators involving a positive operator. AIMS Mathematics, 2025, 10(2): 2684-2696. doi: 10.3934/math.2025126
    [8] Yonghui Ren . Some new Young type inequalities. AIMS Mathematics, 2024, 9(3): 7414-7425. doi: 10.3934/math.2024359
    [9] Chaojun Yang . More inequalities on numerical radii of sectorial matrices. AIMS Mathematics, 2021, 6(4): 3927-3939. doi: 10.3934/math.2021233
    [10] Waqar Afzal, Waqas Nazeer, Thongchai Botmart, Savin Treanţă . Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation. AIMS Mathematics, 2023, 8(1): 1696-1712. doi: 10.3934/math.2023087
  • We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if Ai,Bi,XiB(H) (i=1,2,,n), mN, p,q>1 with 1p+1q=1 and ϕ and ψ are non-negative functions on [0,) which are continuous such that ϕ(t)ψ(t)=t for all t[0,), then

    w2r(ni=1XiAmiBi)n2r1mmj=1ni=11pSpri,j+1qTqri,jr0infξ=1ρ(ξ),

    where r0=min{1p,1q}, Si,j=Xiϕ2(|Aji|)Xi, Ti,j=(AmjiBi)ψ2(|Aji|)AmjiBi and

    ρ(ξ)=n2r1mmj=1ni=1(Sri,jξ,ξp2Tri,jξ,ξq2)2.



    Let H be complex Hilbert space and B(H) be the C-algebra of all bounded linear operator on H. An operator TB(H) is said to be positive if Tξ,ξ0 holds for all ξH. We write T0 if T is positive.

    The numerical radius of TB(H) is defined by

    w(T)=sup{|λ|:λW(T)}=sup{|Tξ,ξ|:ξH,ξ=1}.

    It is well known that w() defines a norm on B(H), which is equivalent to the usual operator norm . In fact, for any TB(H),

    12Tw(T)T. (1.1)

    Also, if TB(H) is normal, then w(T)=T.

    An important inequality for w(T) is the power inequality stating that w(Tn)(w(T))n for every natural numbers n.

    Several numerical radius inequalities improving the inequalities in (1.1) have been recently given in [5,6,12,19,20,21,22]. For instance, Kittaneh [13,14] proved that for any AB(H),

    w(A)12|A|+|A|12(A+A21/2), (1.2)

    where |A|=AA is the absolute value of A, and

    14AA+AAw2(A)12AA+AA. (1.3)

    Also, in the same paper, it was shown that

    A+B2|A|2+|B|2+|A|2+|B|2. (1.4)

    Kittaneh and El-Haddad [15] established the generalizations of inequality (1.2) and the second inequality (1.3) as follows:

    wr(A)12|A|2rλ+|A|2r(1λ) (1.5)

    and

    w2r(A)λ|A|2r+(1λ)|A|2r, (1.6)

    where 0<λ<1 and r1.

    A general numerical radius inequality has been established by Kittaneh [14], it has been proved that if A,B,C,D,T,SB(H), then

    w(ATB+CSD)12A|T|2(1α)A+B|T|2αB+C|S|2(1α)C+D|S|2αD (1.7)

    for all α(0,1).

    Although several open problems relating to numerical radius inequalities for bounded linear operators remain unsolved, work on establishing numerical radius inequalities for a number of bounded linear operators has begun (see, for example, [10] and [19,20,21,22]). If A,BB(H), then

    w(AB)4w(A)w(B).

    In the case that AB=BA, we have

    w(AB)2w(A)w(B).

    Moreover, if A and B are normal, then

    w(AB)w(A)w(B).

    Recently, Dragomir [7] proved that if A,BB(H) and r1, then

    wr(BA)12|A|2r+|B|2r. (1.8)

    Shebrawi and Albadawi [23] discovered a fascinating numerical radius inequality, it has been shown that if A,X,BB(H), then

    wr(AXB)12(A|X|2νA)r+(B|X|2(1ν)B)r,r1,0<ν<1. (1.9)

    Recently, Al-Dolat and Al-Zoubi [3], showed that if Ai,Bi,XiB(H) (i=1,2,,n), mN and ϕ and ψ are non-negative functions on [0,) which are continuous such that ϕ(t)ψ(t)=t for all t[0,), then

    wr(ni=1XiAmiBi)n2r12mmj=1ni=1(Ei,j)r+(Wi,j)r (1.10)

    for r1, where Ei,j=Xiϕ2(|Aji|)Xi and Wi,j=(AmjiBi)ψ2(|Aji|)AmjiBi.

    The goal of this study is to develop significant extensions of these inequalities based on the classic convexity inequalities for nonnegative real numbers and some operator inequalities. For the sum of two operators, usual operator norm inequalities and a related numerical radius inequality are also provided. In specifically, if i=1,2,nN, Ai,Bi, and Xi are bounded linear operators, then we estimate the numerical radius to mi=1XiAmiBi for some mN.

    Using well-known new numerical radius inequalities as an example, we constructed a general numerical radius inequality for Hilbert space operators in this section. This section is initiated with an operator for norm inequality. In fact, we provide an extra upper bound for BA+DC. However, the proof of the theorem depends on the next lemma.

    Lemma 2.1 ([4]). Let ξ,ζ,ηH. Then we have

    |η,ξ|2+|η,ζ|2η2max{ξ2,ζ2}+|ξ,ζ|. (2.1)

    Theorem 2.2. Let A,B,C,DB(H). Then

    BA+DC212[|AB|2+|CD|2+|AB|2|CD|2]+w(DCAB)+2BADC.

    Proof. For ξ,ζH, we have by triangle inequality, we have

    |(BA+DC)ξ,ζ|2|BAξ,ζ|2+|DCξ,ζ|2+2|BAξ,ζDCξ,ζ|. (2.2)

    Now in inequality (2.1), for all ξ,ζH, letting ξ=ABζ, ζ=CDζ and η=ξ with ξ=ζ=1, we get

    |ξ,ABζ|2+|ξ,CDζ|2max{ABζ2,CDζ2}+|ABζ,CDζ|.

    Now use the fact that

    max{σ,τ}=12[σ+τ+|στ|]for anyσ,τR,

    we have

    |BAξ,ζ|2+|DCξ,ζ|212[|AB|2+|CD|2)ζ,ζ+|(|AB|2|CD|2)ζ,ζ|+|ABζ,CDζ|]. (2.3)

    Combining the inequalities (2.2) and (2.3), we have

    |(BA+DC)ξ,ζ|212[|AB|2+|CD|2)ζ,ζ+|(|AB|2|CD|2)ζ,ζ|+|ABζ,CDζ|].+2|BAζ,ζCDζ,ζ|.

    Taking the supremum over all unit vectors ξ,ζ, we obtain the desired inequality.

    In Theorem 2.2, if we let A=B=C=D=S, we have:

    Corollary 2.3. Let SB(H). Then

    SS+SS212[|S|4+|S|4+|S|4|S|4]+w(|S|2|S|2)+2|S|2|S|2.

    In the proof of Theorem 2.2, if we let ξ=ζ, we have:

    Corollary 2.4. Let A,B,C,DB(H). Then

    w2(BA+DC)12[|AB|2+|CD|2+|AB|2|CD|2]+w(DCAB)+2w(BA)w(DC).

    The following lemma gives a basic but useful extension for four operators of the Schwarz inequality due to Dragomir [8].

    Lemma 2.5. Let A,B,C,DB(H). Then for ξ,ζH we have the inequality

    |DCBAξ,ζ|2|BA|2ξ,ξ|(DC)|2ζ,ζ.

    The equality case holds if and only if the vectors BAξ and CDζ are linearly dependent in H.

    The following lemma, known as the Hölder-McCarthy inequality, is a well-known conclusion derived from Jensen's inequality and the spectral theorem for positive operators (see [12]).

    Lemma 2.6. Let TB(H), T0 and let ξH be any unit vector. Then we have

    (i) Tξ,ξrTrξ,ξ for r1.

    (ii) Trξ,ξTξ,ξr for 0<r1.

    (iii) If T is invertible, then Tξ,ξrTrξ,ξ for all r<0.

    The next result is well known in the literature as the Mond-Pečarić inequality [18].

    Lemma 2.7. If ψ is a convex function on a real interval J containing the spectrum of the self-adjoint operator T, then for any unit vector ξH,

    ψ(Tξ,ξ)ψ(T)ξ,ξ (2.4)

    and the reverse inequality holds if ψ is concave.

    The forth lemma is a direct consequence of [2, Theorem 2.3].

    Lemma 2.8. Let ψ be a non-negative non-decreasing convex function on [0,) and let T,SB(H) be positive operators. Then for any 0<μ<1,

    ψ(μT+(1μ)S)μψ(T)+(1μ)ψ(S). (2.5)

    The above four lemmas admit the following more general result.

    Theorem 2.9. Let A,B,C,DB(H). If ψ is a non-negative increasing convex function on [0,), then for any 0<μ<1,

    ψ(w2(DCBA))μψ(|BA|2μ)+(1μ)ψ(|(DC)|21μ). (2.6)

    In particular,

    w2r(DCBA)μ|BA|2rμ+(1μ)|(DC)|2r1μ (2.7)

    for all r1.

    Proof. For any unit vector ξH, we have

    |DCBAξ,ξ|2|BA|2ξ,ξ|(DC)|2ξ,ξ(by Lemma (2.5))|BA|2μξ,ξμ|(DC)|21μξ,ξ1μ(by Lemma 2.4 for concavity ofψ(t)=tμfor0<μ<1)μ|BA|2μξ,ξ+(1μ)|(DC)|21μξ,ξ(by weighted arithmetic-geometric mean inequality ).

    Taking the supremum over ξH with ξ=1, we infer that

    w2(DCBA)μ|BA|2μ+(1μ)|(DC)|21μ. (2.8)

    On account of assumptions on ψ, we can write

    ψ(w2(DCBA))ψ(μ|BA|2μ+(1μ)|(DC)|21μ)μψ(|BA|2μ)+(1μ)ψ(|(DC)|21μ)(by Lemma 2.5).

    The inequality (2.7) follows directly from (2.6) by taking ψ(t)=tr (r1).

    In the following result, we want to improve (1.9) under certain mild situations. We'll need the arithmetic-geometric mean inequality refinement [24] to do this.

    Lemma 2.10. Suppose that μ,ν>0 and positive real numbers δ,Δ satisfy

    min{μ,ν}δ<Δmax{μ,ν}.

    Then

    Δ+δ2δΔμνμ+ν2.

    The following lemma is very useful in the proof of the next result.

    Lemma 2.11. Let ψ be a non-negative increasing convex function on [0,), ψ(0)=0 and α[0,1]. Then ψ(αt)αψ(t).

    Theorem 2.12. Let A,B,C,DB(H) and let ψ be a non-negative increasing convex function on [0,). If

    0<|BA|2δ<Δ|(DC)|2

    or

    0<|(DC)|2δ<Δ|BA|2,

    then

    ψ(w(DCBA))δΔδ+Δψ(|BA|2)+ψ(|(DC)|2). (2.9)

    Proof. It follows from Lemma 2.5 that

    |DCBAξ,ξ||BA|2ξ,ξ|(DC)|2ξ,ξ. (2.10)
    ΔδΔ+δ[|BA|2ξ,ξ+|(DC)|2ξ,ξ]=ΔδΔ+δ(|BA|2+|(DC)|2)ξ,ξ. (2.11)

    Combining (2.10) and (2.11), we obtain

    |DCBAξ,ξ|ΔδΔ+δ(|BA|2+|(DC)|2)ξ,ξ. (2.12)

    Taking the supremum over ξH with ξ=1, we infer that

    w(DCBA)ΔδΔ+δ|BA|2+|(DC)|2.

    Now, since ψ is a non-negative increasing convex function, we have

    ψ(w(DCBA))ψ(2ΔδΔ+δ|BA|2+|(DC)|22)2ΔδΔ+δψ(|BA|2+|(DC)|22)(by Lemma 2.11 becauseα=2ΔδΔ+δ1)2ΔδΔ+δψ(|BA|2+|(DC)|22)ΔδΔ+δψ(|BA|2)+ψ(|(DC)|2)(by Lemma 2.8).

    As an applications of Theorem 2.12, we have:

    Corollary 2.13. Let TB(H), α,β0 with α+β1 and let ψ be a non-negative increasing convex function on [0,). If

    0<|T|2βδ<Δ|T|2α

    or

    0<|T|2αδ<Δ|T|2β,

    then

    ψ(w(T|T|β1T|T|α1))ΔδΔ+δψ(|T|2β)+ψ(|T|2α). (2.13)

    Remark 2.14. Following (2.9) we list here some particular inequalities of interest.

    (i) If we let ψ(t)=tr (r1), we have

    wr(DCBA)ΔδΔ+δ|BA|2r+|(DC)|2r,

    whenever

    0<|BA|2δ<Δ|(DC)|2or0<|(DC)|2δ<Δ|BA|2.

    (ii) Letting D=S,A=T and let ψ(t)=tr (r1), we have

    wr(TS)ΔδΔ+δ|T|2r+|S|2r,

    whenever

    0<|T|2δ<Δ|S|2or0<|S|2δ<Δ|T|2.

    (iii) Letting C=D=B=I and A=T and let ψ(t)=tr (r1), we have

    wr(T)ΔδΔ+δ|T|2r+I,

    whenever

    0<|T|2δ<ΔMIor0<Iδ<Δ|T|2.

    We give an example to clarify part (ⅱ) in Remark 2.14

    Example 2.15. Let S=[3/21/21/23/2] and T=[1/2001/2] and r=2. A simple calculations show that ST=(34141434) and so w2(ST)=1, |S|4+|T|4=25716=16.0625. If we take δ=0.3 and Δ=.4, then

    w2(ST)=1ΔδΔ+δ|S|4+|T|4=7.94.

    If A,BB(H) are positive, the geometric mean of A and B, denoted by AB, is defined as

    AB=A12(A12BA12)12A12.

    For 0ν1, the ν-weighted geometric mean, denoted by AνB, is defined as

    AνB=A12(A12BA12)1νA12.

    The ν-weighted geometric mean was introduced by Kubo and Ando [11], and when ν=12 this is just the geometric mean. One can show that AνB=B1νA for 0ν1. When A and B commute, AνB=AνB1ν. The ν-weighted arithmetic mean of A and B, denoted by AνB, is defined as

    AνB=(1ν)A+νB.

    Theorem 2.16. Let A,B,C,DB(H), and let ψ be a non-negative increasing convex function on [0,). If for given m,M>0,

    0<m|BA|2|(DC)|2Mor0<m|(DC)|2|BA|2M,

    then

    ψ(w(DCBA))12γψ(|BA|2)+ψ(|(DC)|2),

    where

    γ:=(118(11h)2)11withh=Mm.

    To prove Theorem 2.16, we need the following result that established by Furuichi [9].

    Corollary 2.17. Let 0ν1, 1r1<0, 0<r21 and let T and S be strictly positive operators satisfying (i) 0<mTm<MSM or (ii) 0<mSm<MTM with h=Mm and h=Mm. Then

    expr1(ν(1ν)2(h1h)2)TνSTνSexpr2(ν(1ν)2(h1)2)TνS.

    Proof of Theorem 2.16. From Corollary 2.17, we have

    expr(ν(1ν)2(11h)2)TνSTνS

    for T,S>0 with m,M>0 satisfying 0<mTSM or 0<mSTM, where expr(ξ):=(1+rξ)1/r, if 1+rξ>0, and it is undefined otherwise. Since expr(ξ) is decreasing in r[1,0), the above inequality gives a tight lower bound when r=1. After all, we have the scalar inequality:

    γστσ+τ2

    for σ,τ>0 and m,M>0 such that 0<mmin{σ,τ}max{σ,τ}M. Applying this inequality with a similar argument as in Theorem 2.12, we obtain the desired result.

    Theorem 2.18. Let A,B,C,DB(H) 0<ν<1 and let ψ be a non-negative increasing convex function on [0,). Then

    ψ(w2(DCBA))(1ν)ψ(|BA|21ν)+νψ(|(DC)|2ν)rγ(ψ) (2.14)

    where r=min{ν,1ν} and

    γ(ψ)=infξ=1{ψ(|BA|21νξ,ξ)+ψ(|(DC)|2νξ,ξ)2ψ((|BA|21νξ,ξ+|(DC)|2νξ,ξ2)ξ,ξ)}. (2.15)

    Proof. We assume 0ν12. For each unit vector ξH,

    ψ(((1ν)|BA|21ν+ν|(DC)|2ν)ξ,ξ)+rγ(ψ)=ψ((1ν)|BA|21νξ,ξ+ν|(DC)|2νξ,ξ)+rγ(ψ)=ψ((12ν)|BA|21νξ,ξ+2ν(|BA|21ν+|(DC)|2ν2)ξ,ξ)+rγ(ψ)(12ν)ψ(|BA|21νξ,ξ)+2νψ((|BA|21ν+|(DC)|2ν2)ξ,ξ)+rγ(ψ)(by convexity of ψ).

    Hence

    ψ(((1ν)|BA|21ν+ν|(DC)|2ν)ξ,ξ)+rγ(ψ)(12ν)ψ(|BA|21νξ,ξ)+2νψ((|BA|21ν+|(DC)|2ν2)ξ,ξ)+r(ψ(|BA|21νξ,ξ)+ψ(|(DC)|2νξ,ξ)2ψ((|BA|21ν+|(DC)|2ν2)ξ,ξ))(by inequality 2.15)(1ν)ψ(|BA|21νξ,ξ)+νψ(|(DC)|2νξ,ξ)((1ν)ψ(|BA|21ν)+νψ(|(DC)|2ν))ξ,ξ(by Lemma 2.7).

    If we apply similar arguments for 12ν1, then we can write

    ψ(((1ν)|BA|21ν+ν|(DC)|2ν)ξ,ξ)((1ν)ψ(|BA|21ν)+νψ(|(DC)|2ν))ξ,ξrγ(ψ).

    We know that if TB(H) is a positive operator, then T=supξ=1Tξ,ξ. By using this, the continuity and the increase of ψ, we have

    ψ((1ν)|BA|21ν+ν|(DC)|2ν)=ψ(supξ=1((1ν)|BA|21ν+ν|(DC)|2ν)ξ,ξ)=supξ=1ψ(((1ν)|BA|21ν+ν|(DC)|2ν)ξ,ξ)supξ=1((1ν)ψ(|BA|21ν)+νψ(|(DC)|2ν))ξ,ξrγ(ψ)=(1ν)ψ(|BA|21ν)+νψ(|(DC)|2ν)rγ(ψ).

    On the other hand, if XB(H), and if ψ is a non-negative increasing function on [0,), then ψ(X)=ψ(|X|).

    Now from the proof of Theorem 2.9, we have

    ψ(w2(DCBA))ψ((1ν)|BA|21ν+ν|(DC)|2ν)(1ν)ψ(|BA|21ν)+νψ(|(DC)|2ν)rγ(ψ).

    This completes the proof.

    Inequality (2.18) includes several numerical radius inequalities as special cases.

    Corollary 2.19. Let TB(H), α+β1, 0<ν<1 and let ψ be a non-negative increasing convex function on [0,). Then

    ψ(w2(T|T|β1T|T|α1))(1ν)ψ(|T|2β1ν)+νψ(|T|2αν)rγ(ψ) (2.16)

    where r and γ(ψ) as in Theorem 2.18.

    Proof. Let T=U|T| be the polar decomposition of the operator T, where U is partial isometry and the kernel ker(U)=N(|T|). If we take D=U,C=|T|β,B=U and A=|T|α, we have

    DCBA=T|T|β1T|T|α1,|BA|2=|T|2αand|(DC)|2=|T|2β.

    So, the result follows by Theorem 2.18.

    Corollary 2.20. Let TB(H), α,β0 such that α+β2, 0<ν<1 and let ψ be a non-negative increasing convex function on [0,). Then

    ψ(w2(T|T|α+β2T))(1ν)ψ(|T|2β1ν)+νψ(|T|2αν)rγ(ψ) (2.17)

    where r and γ(ψ) as in Theorem 2.18.

    Proof. Let T=U|T| be the polar decomposition of the operator T, where U is partial isometry and the kernel ker(U)=N(|T|). Then T=|T|U. If we take D=U,C=|T|β,B=|T|α and A=U, we have

    DCBA=U|T|β|T|αU=T|T|α+β2T,|BA|2=|T|2αand|(DC)|2=|T|2β.

    So, the result follows by Theorem 2.18.

    Corollary 2.21. Let TB(H), α,β0, 0<ν<1 and let ψ be a non-negative increasing convex function on [0,). Then

    ψ(w2(|T|αT2|S|β))(1ν)ψ(|T|2β+21ν)+νψ(|T|T|α|2ν)rγ(ψ) (2.18)

    where r and γ(ψ) as in Theorem 2.18.

    Proof. In Theorem 2.18, if we let D=|T|α,C=T,B=T and A=|T|β, then

    |BA|2=A|B|2A=|T|β|T|2|T|α=|T|2β+2|(DC)|2=D|C|2D=|T|α|T|2|T|α=|T|αTT|T|α=|T|αT(|T|αT)=|(|T|αT)|2=|T|T|α|2,

    so the result:

    Inequalities for numerical radius and operator norm have now been given, although in the context of superquadratic functions. Remember that a function ψ:[0,)R is termed superquadratic if there exists a constant CxR such that

    ψ(t)ψ(ξ)+Cξ(tξ)+ψ(|tξ|) (2.19)

    for all t0. If ψ is superquadratic, we say ψ is subquadratic. As a result, for a superquadratic function, ψ must be above its tangent line plus a translation of ψ. Superquadratic functions appear to be stronger than convex functions at first glance, however they may be deemed weaker if ψ has negative values. If ψ is superquadratic and non-negative, then ψ is increasing and convex, and if Cξ is equal to (2.19), then Cξ0 [1].

    Theorem 2.22. Let AB(H) and let ψ be a non-negative superquadratic function. Then

    ψ(w(A))ψ(|A|)infξ=1ψ(||A|A|)122. (2.20)

    Proof. Letting ξ=A in the inequality (2.19), we get

    ψ(t)ψ(A)+CA(tA)+ψ(|tA|). (2.21)

    By applying functional calculus for the operator |A| in (2.21) we get

    ψ(|A|)ψ(A)+CA(|A|A)+ψ(||A|A|). (2.22)

    Hence,

    ψ(|A|)ξ,ξψ(A)+CA(|A|ξ,ξA)+ψ(||A|A|)ξ,ξ.

    Consequently,

    ψ(|A|)ξ,ξψ(A)+CA(|A|ξ,ξA)+ψ(||A|A|)12x2 (2.23)

    for every unit vector ξH.

    Now, by taking supremum over ξH with ξ=1 in (2.23), and using the fact w(|A|)=Aw(A), and ψ is increasing, we deduce the desired inequality (2.20).

    Applying Theorem 2.22 to the superquadratic function ψ(t)=tr (r2), we reach the following corollary:

    Corollary 2.23. Let AB(H). Then for any r2,

    wr(A)Arinfξ=1||A|A|r22.

    In particular

    w(A)A2infξ=1||A|A|2A.

    In this section, We provide various inequalities involving power numerical radii and the usual operator norms of Hilbert space operators. In particular, if Ai,Bi and Xi are bounded linear operators (i=1,2,nN), then we estimate the numerical radius to mi=1XiAmiBi for some mN.

    The following lemma is a straightforward application of Jensen's inequality about the convexity or concavity of certain power functions. Schlömilch's inequality for the weighted means of non-negative real numbers is a specific example of this inequality.

    Lemma 3.1. Let σ,τ>0 and 0α1. Then

    σατ1αασ+(1α)τ(ασr+(1α)τr)1rforr1. (3.1)

    The following result was established by Kittaneh and Manasrah [16], which is a refinement of the scalar Young inequality.

    Lemma 3.2. Let σ,τ>0, and p,q>1 such that 1p+1q=1. Then

    στ+r0(σp2τq2)2σpp+τqq, (3.2)

    where r0=min{1p,1q}.

    Manasrah and Kittaneh have generalized (3.2) in [17], as follows:

    Lemma 3.3. Let σ,τ>0, and p,q>1 such that 1p+1q=1. Then for m=1,2,, we have

    (σ1pτ1q)m+rm0(σm2τm2)2(σrp+τrq)mr,r1 (3.3)

    where r0=min{1p,1q}. In particular, if p=q=2, then

    (στ)m+12m(σm2τm2)22mr(σr+τr)mr. (3.4)

    For m=1, and p=q=2, we have

    στ+12(στ)221r(σr+τr)1r. (3.5)

    The convexity of the function ψ(t)=tr, r1 leads to the following lemma, which deals with positive real numbers.

    Lemma 3.4. Let σi,i=1,,n be positive real numbers. Then

    (ni=1σi)rnr1ni=1σriforr1. (3.6)

    Theorem 3.5. Let Ai,Ci,DiB(H), (i=1,,n), mN. Then

    wr(ni=1DiCmiAi)nr12mmj=1ni=1(|CjiAi|2r+|(DiCmji)|2r) (3.7)

    for all r1.

    Proof. Let ξH be any unit vector. Then by Lemma 2.5, Lemma 3.1 and Lemma 3.4, we obtain that

    |ni=1DiCmiAiξ,ξ|r=1mmj=1|ni=1DiCmjiCjiAiξ,ξ|r1mmj=1(ni=1|DiCmjiCjiAiξ,ξ|)r.

    This implies that

    |ni=1DiCmiAiξ,ξ|rnr1mmj=1ni=1|DiCmjiCjiAiξ,ξ|rnr1mmj=1ni=1|CjiAi|2ξ,ξr2|(DiCmji)|2ξ,ξr2nr1mmj=1ni=1|CjiAi|2rξ,ξ12|(DiCmji)|2rξ,ξ12nr12mmj=1ni=1(|CjiAi|2r+|(DiCmji)|2r)ξ,ξ.

    Taking the supremum over all unit vectors ξH, we get the result.

    For Di=Ai=I in inequality (3.7), we have:

    Corollary 3.6. Let CiB(H), (i=1,,n), mN. Then

    wr(ni=1Cmi)nr12mmj=1ni=1(|Cji|2r+|(Cmji)|2r) (3.8)

    for all r1.

    The following is an example of how Corollary 3.6 may be used. It entails a numerical radius inequality for operator powers.

    Corollary 3.7. Let CB(H) and mN. Then for all r1, we have

    wr(Cm)12mmj=1|Cj|2r+|(Cmj)|2r.

    Theorem 3.8. Let Ai,Ci,DiB(H), (i=1,,n), mN and 0α1. Then

    w(ni=1DiCmiAi)1mmj=1ni=1α|CjiAi|2rα+(1α)|(DiCmji)|2r1α12r (3.9)

    for all r1.

    Proof. Let ξH be any unit vector. Then by Lemmas 2.5, 3.1 and 3.4, we obtain

    |ni=1DiCmiAiξ,ξ|=1mmj=1|ni=1DiCmjiCjiAiξ,ξ|1mmj=1ni=1|CjiAi|2ξ,ξ12|(DiCmji)|2ξ,ξ12.

    Hence,

    |ni=1DiCmiAiξ,ξ|1mmj=1ni=1(|CjiAi|2ξ,ξ|(DiCmji)|2ξ,ξ)121mmj=1ni=1(|CjiAi|2αξ,ξα|(DiCmji)|21αξ,ξ1α)121mmj=1ni=1(α|CjiAi|2αξ,ξr+(1α)|(DiCmji)|21αξ,ξr)12r1mmj=1ni=1(α|CjiAi|2rα+(1α)|(DiCmji)|2r1α)ξ,ξ12r.

    Taking the supremum over all unit vectors ξH, we deduce the desired result.

    Theorem 3.9. Let Ai,Ci,DiB(H), (i=1,,n), mN and p,q>1 such that 1p+1q=1. Then

    w2(ni=1DiCmiAi)1mmj=1ni=11p|CjiAi|2p+1q|(DiCmji)|2qr0infξ=1ψ(ξ), (3.10)

    where r0=min{1p,1q} and

    ψ(ξ)=nmmj=1ni=1(||CjiAi|2ξ,ξp2|(DiCmji)|ξ,ξq2)2.

    Proof. Let ξH be any unit vector. Then by Lemmas 2.5, 3.2 and 3.4, we obtain

    |ni=1DiCmiAiξ,ξ|2=1mmj=1|ni=1DiCmjiCjiAiξ,ξ|2nmmj=1ni=1|DiCmjiCjiAiξ,ξ|2nmmj=1ni=1|CjiAi|2ξ,ξ|(DiCmji)|2ξ,ξnmmj=1ni=1(1p|CjiAi|2pξ,ξ+1q|(DiCmji)|2qξ,ξ)nr0mmj=1ni=1(|CjiAi|2ξ,ξp2|(DiCmji)|2ξ,ξq2)2.

    This implies that

    |ni=1DiCmiAiξ,ξ|2nmmj=1ni=1(1p|CjiAi|2p+1q|(DiCmji)|2q)ξ,ξnr0mmj=1ni=1(|CjiAi|2ξ,ξp2|(DiCmji)|2ξ,ξq2)2.

    Taking the supremum over all unit vectors ξH, we deduce the desired result.

    Theorem 3.10. Let Ai,Ci,DiB(H), (i=1,,n), mN and p,q>1 such that 1p+1q=1 and k=1,2,. Then

    w2k(ni=1DiCmiAi)n2k1mmj=1ni=11p|CjiAi|2rp+1q|(DiCmji)|2qrkrrk0infξ=1η(ξ), (3.11)

    where r0=min{1p,1q} and

    η(ξ)=n2k1mmj=1ni=1(|CjiAi|2pξ,ξk2|(DiCmji)|2qξ,ξk2)2

    for all r1.

    Proof. Let ξH be any unit vector. Then by Lemmas 2.5, 3.3 and 3.4, we obtain

    |ni=1DiCmiAiξ,ξ|2k=1mmj=1|ni=1DiCmjiCjiAiξ,ξ|2kn2k1mmj=1ni=1|DiCmjiCjiAiξ,ξ|2k.

    This implies that

    |ni=1DiCmiAiξ,ξ|2kn2k1mmj=1ni=1(|CjiAi|2ξ,ξ|(DiCmji)|2ξ,ξ)kn2k1mmj=1ni=1(|CjiAi|2ppξ,ξ|(DiCmji)|2qqξ,ξ)kn2k1mmj=1ni=1(|CjiAi|2pξ,ξ1p|(DiCmji)|2qξ,ξ1q)kn2k1mmj=1ni=1(1p|CjiAi|2rp+1q|(DiCmji)|2qr)ξ,ξkrn2k1rk0mmj=1ni=1(|CjiAi|2pξ,ξk2|(DiCmji)|2qξ,ξk2)2.

    Taking the supremum over all unit vectors ξH, we deduce the desired result.

    For k=1, and p=q=2, we have:

    Corollary 3.11. Let Ai,Ci,DiB(H), (i=1,,n), mN. Then

    w2(ni=1DiCmiAi)n21rmmj=1ni=1|CjiAi|4r+|(DiCmji)|4r1r12infξ=1η(ξ), (3.12)

    where

    η(ξ)=nmmj=1ni=1(|CjiAi|4ξ,ξ12|(DiCmji)|4ξ,ξ12)2

    for all r1.

    The following lemma is an extended variant of the mixed Schwarz inequality, which has been shown by Kittaneh [12] and is highly relevant in the following results.

    Lemma 3.12. Let AB(H), and ψ and ϕ be non-negative functions on [0,) which are continuous such that ψ(t)ϕ(t)=t for all t[0,). Then

    |Aξ,ζ|ψ(|A|)ξϕ(|A|)ζ, (3.13)

    for all ξ,ζH.

    The next results give improvements of the inequality (1.10).

    Theorem 3.13. Let Ai,Bi,XiB(H), (i=1,,n), mN, p,q>1 with 1p+1q=1 and let ψ and ϕ be as in Lemma 3.12. Then for all r1, we have

    w2r(ni=1XiAmiBi)n2r1mmj=1ni=11pSpri,j+1qTqri,jr0infξ=1ρ(ξ), (3.14)

    where r0=min{1p,1q}, Si,j=Xiψ2(|Aji|)Xi, Ti,j=(AmjiBi)ϕ2(|Aji|)AmjiBi and

    ρ(ξ)=n2r1mmj=1ni=1(Sri,jξ,ξp2Tri,jξ,ξq2)2.

    Proof. Let ξH be any unit vector. Then by Lemma 3.3, Lemma 3.4 and Lemma 3.12, we obtain

    |ni=1XiAmiBiξ,ξ|2r=1mmj=1|ni=1XiAmjiAjiBiξ,ξ|2r1mmj=1(ni=1|XiAmjiAjiBiξ,ξ|)2rn2r1mmj=1ni=1|XiAmjiAjiBiξ,ξ|2r

    and so

    |ni=1XiAmiBiξ,ξ|2rn2r1mmj=1ni=1|AjiXix,AmjiBix|2rn2r1mmj=1ni=1ψ(|Aji|)Xix2rϕ(|Aji|)AmjiBix2rn2r1mmj=1ni=1Si,jξ,ξrTi,jξ,ξrn2r1mmj=1ni=1Sri,jξ,ξTri,jξ,ξ.

    Hence,

    |ni=1XiAmiBiξ,ξ|2rn2r1mmj=1ni=1(1pSpri,j+1qTqri,j)ξ,ξr0n2r1mmj=1ni=1(Sri,jξ,ξp2Tri,jξ,ξq2)2.

    Taking the supremum over all unit vectors ξH, we deduce the desired result.

    Inequality (3.17) includes several numerical radius inequalities as special cases. Samples of inequalities are demonstrated in what follows, for ψ(t)=tλ and ϕ(t)=t1λ, λ(0,1) in inequality (3.17).

    Corollary 3.14. Let Ai,Bi,XiB(H), (i=1,,n), mN, p,q>1 with 1p+1q=1 and let ψ and g be as in Lemma 3.12. Then for all r1, we have

    w2r(ni=1XiAmiBi)n2r1mmj=1ni=11pSpri,j+1qTqri,jr0infξ=1ρ(ξ), (3.15)

    where r0=min{1p,1q}, Si,j=Xi|Aji|2λXi, Ti,j=(AmjiBi)|Aji|2(1λ)AmjiBi and

    ρ(ξ)=n2r1mmj=1ni=1(Sri,jξ,ξp2Tri,jξ,ξq2)2.

    For Xi=Bi=I in inequality (3.14) we get the following numerical radius inequality.

    Corollary 3.15. Let Ai,B(H), (i=1,,n), mN, p,q>1 with 1p+1q=1 and let ψ and g be as in Lemma 3.12. Then for all r1, we have

    w2r(ni=1Ami)n2r1mmj=1ni=11pSpri,j+1qTqri,jr0infξ=1ρ(ξ), (3.16)

    where r0=min{1p,1q}, Si,j=ψ2(|(Aji)|), Ti,j=(Amji)ϕ2(|Aji|)Amji and

    ρ(ξ)=n2r1mmj=1ni=1(Sri,jξ,ξp2Tri,jξ,ξq2)2.

    An application of Corollary 3.15 can be seen in the following result. It involves a numerical radius inequality for the powers of operator.

    Corollary 3.16. Let AB(H), mN, p,q>1 with 1p+1q=1 and let ψ(t)=tλ and ϕ(t)=t1λ. Then for all r1, we have

    w2r(Am)1mmj=11pSprj+1qTqrjr0infξ=1ρ(ξ), (3.17)

    where r0=min{1p,1q}, Sj=|(Aj)|2λ, Tj=(Amj)|Aj|2(1λ)Amj and

    ρ(ξ)=1mmj=1(Srjξ,ξp2Trjξ,ξq2)2.

    Theorem 3.17. Let Ai,Bi,XiB(H), (i=1,,n), m,kN, p,q>1 with 1p+1q=1 and let ψ and ϕ be as in Lemma 3.12. Then for all r1, we have

    w2k(ni=1XiAmiBi)n2k1mmj=1ni=11pSpri,j+1qTqri,jkrrk0infξ=1ω(ξ), (3.18)

    where r0=min{1p,1q}, Si,j=Xiψ2(|Aji|)Xi, Ti,j=(AmjiBi)ϕ2(|Aji|)AmjiBi and

    ω(ξ)=n2k1mmj=1ni=1(Spi,jξ,ξk2Tqi,jξ,ξk2)2.

    Proof. Let ξH be any unit vector. Then by Lemmas 3.3, 3.4 and 3.12, we obtain

    |ni=1XiAmiBiξ,ξ|2k=1mmj=1|ni=1XiAmjiAjiBiξ,ξ|2k1mmj=1(ni=1|XiAmjiAjiBiξ,ξ|)2kn2k1mmj=1ni=1|XiAmjiAjiBiξ,ξ|2kn2k1mmj=1ni=1|AjiXix,AmjiBix|2k

    this implies that

    |ni=1XiAmiBiξ,ξ|2kn2k1mmj=1ni=1ψ(|Aji|)Xix2kϕ(|Aji|)AmjiBix2kn2k1mmj=1ni=1(Spi,jξ,ξ1pTqi,jξ,ξ1q)kn2k1mmj=1ni=1(1pSpri,jξ,ξ+1qTqri,jξ,ξ)krrk0n2k1mmj=1ni=1(Spi,jξ,ξk2Tqi,jξ,ξk2)2.

    Hence,

    |ni=1XiAmiBiξ,ξ|2kn2r1mmj=1ni=1(1pSpri,j+1qTqri,j)ξ,ξkrrk0n2k1mmj=1ni=1(Spi,jξ,ξk2Tqi,jξ,ξk2)2.

    Taking the supremum over all unit vectors ξH, we deduce the desired result.

    If we take k=1 and p=q, we have:

    Corollary 3.18. Let Ai,Bi,XiB(H), (i=1,,n), mN, and let ψ and ϕ be as in Lemma 3.12. Then for all r1, we have

    w2(ni=1XiAmiBi)nm21rmj=1ni=1S2ri,j+T2ri,j1r12infξ=1ω(ξ), (3.19)

    where Si,j=Xiψ2(|Aji|)Xi, Ti,j=(AmjiBi)ϕ2(|Aji|)AmjiBi and

    ω(ξ)=nmmj=1ni=1(S2i,jξ,ξ12T2i,jξ,ξ12)2.

    In this work, we have derived a series of precise inequalities involving the standard operator norms of Hilbert space operators and powers of the numerical radii. These inequalities build upon traditional convexity inequalities for nonnegative real numbers and extend earlier numerical radius inequalities in the context of operator theory.

    As part of future work, further investigations could explore the practical implications and applications of these inequalities in the context of operator theory and related areas of mathematics and physics.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We thank the referees for their valuable comments and helpful suggestions.

    The authors declare no conflict of interests.



    [1] S. Abramovich, G. Jameson, G. Sinnamon, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie, 47 (2004), 3–14.
    [2] J. S. Aujla, F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217–233. https://doi.org/10.1016/S0024-3795(02)00720-6 doi: 10.1016/S0024-3795(02)00720-6
    [3] M. A. Dolat, K. A. Zoubi, Numerical radius inequalities for Hilbert space operators, J. Math. Ineq., 10 (2016), 1041–1049. http://dx.doi.org/10.7153/jmi-10-83 doi: 10.7153/jmi-10-83
    [4] S. S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl., 419 (2006), 256–264. https://doi.org/10.1016/j.laa.2006.04.017 doi: 10.1016/j.laa.2006.04.017
    [5] S. S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2006), 255–262. https://doi.org/10.1017/S0004972700038831 doi: 10.1017/S0004972700038831
    [6] S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces, Tamkang J. Math., 39 (2008). https://doi.org/10.5556/j.tkjm.39.2008.40 doi: 10.5556/j.tkjm.39.2008.40
    [7] S. S. Dragomir, Power inequalities for the numarical radius of a product of two operators in Hilbert spaces, Res. Rep. Collect., 11 (2008), 269–278.
    [8] S. S. Dragomir, Some inequalities generalizing Kato's and Furuta's results, Filomat, 28 (2014), 179–195. https://doi.10.2298/FIL1401179D doi: 10.2298/FIL1401179D
    [9] S. Furuichi, Further improvements of Young inequality, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113 (2019), 255–266. https://doi.org/10.1007/s13398-017-0469-5 doi: 10.1007/s13398-017-0469-5
    [10] K. Gustafson, D. Rao, Numerical Range, New York: Springer-Verlage, 1997. https://doi.org/10.1007/978-1-4613-8498-4_1
    [11] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205–224. https://doi.org/10.1007/BF01371042 doi: 10.1007/BF01371042
    [12] F. Kittaneh, Notes on some inequalities for Hilbert Space operators, Publ Res. Inst. Math. Sci., 24 (1988), 283–293. https://doi.org/10.2977/PRIMS/1195175202 doi: 10.2977/PRIMS/1195175202
    [13] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11–17. https://doi.org/10.4064/sm158-1-2 doi: 10.4064/sm158-1-2
    [14] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73–80. http://eudml.org/doc/284514
    [15] F. Kittaneh, M. El-Haddad, Numerical radius inequalities for Hilbert space operators Ⅱ, Studia Math., 182 (2007), 133–140. https://doi.org/10.4064/sm182-2-3 doi: 10.4064/sm182-2-3
    [16] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361 (2010), 262–269. https://doi.org/10.1016/j.jmaa.2009.08.059 doi: 10.1016/j.jmaa.2009.08.059
    [17] Y. A. Manasrah, F. Kittaneh, A generalization of two refined Young inequalities, Positivity, 19 (2015), 757–768. https://doi.org/10.1007/s11117-015-0326-8 doi: 10.1007/s11117-015-0326-8
    [18] B. Mond, J. Pečarić, On Jensen's inequality for operator convex functions, Houston J. Math., 21 (1995), 739–753.
    [19] M. H. M. Rashid, Power inequalities for the numerical radius of operators in Hilbert spaces, Khayyam J. Math., 5 (2019), 15–29. https://doi.org/10.22034/kjm.2019.84204 doi: 10.22034/kjm.2019.84204
    [20] M. H. M. Rashid, N. H. Altaweel, Numerical range of generalized aluthge transformation, Informatica J., 32 (2021), 2–11.
    [21] M. H. M. Rashid, N. H. Altaweel, Some generalized numerical radius inequalities for Hilbert space operators, J. Math. Ineq., 16 (2022), 541–560. http://dx.doi.org/10.7153/jmi-2022-16-39 doi: 10.7153/jmi-2022-16-39
    [22] M. H. M. Rashid, Refinements of some numerical radius inequalities for Hilbert space operators, Tamkang J.Math., 54 (2023), 155–173. https://doi.org/10.5556/j.tkjm.54.2023.4061 doi: 10.5556/j.tkjm.54.2023.4061
    [23] K. Shebrawi, H. Albadwi, Numerical radius and operator norm inequalities, J. Inequal. Appl., 11 (2009), 492154. https://doi.org/10.1155/2009/492154 doi: 10.1155/2009/492154
    [24] S. Tafazoli, H. R. Moradi, S. Furuichi, P. Harikrishnan, Further inequalities for the numerical radius of Hilbert space operators, J. Math. Ineq., 13 (2019), 955–967.
  • This article has been cited by:

    1. Waqar Afzal, Luminita-Ioana Cotîrlă, New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings, 2025, 17, 2073-8994, 146, 10.3390/sym17010146
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1147) PDF downloads(72) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog