Research article

Limit theorems for negatively superadditive-dependent random variables with infinite or finite means

  • Received: 09 July 2023 Revised: 09 August 2023 Accepted: 22 August 2023 Published: 30 August 2023
  • MSC : 60F05, 60F15

  • The author studies the laws of large numbers for weighted sums of negatively superadditive-dependent random variables. The obtained results in this paper extend and improve the corresponding theorems of Yang et al. [Commun. Stat. Theor. M., 48 (2019), 3044-3054]. Moreover, the author obtains a new theorem of mean convergence for weighted sums of negatively superadditive-dependent random variables, which was not considered in Yang et al. (2019).

    Citation: Yongfeng Wu. Limit theorems for negatively superadditive-dependent random variables with infinite or finite means[J]. AIMS Mathematics, 2023, 8(11): 25311-25324. doi: 10.3934/math.20231291

    Related Papers:

  • The author studies the laws of large numbers for weighted sums of negatively superadditive-dependent random variables. The obtained results in this paper extend and improve the corresponding theorems of Yang et al. [Commun. Stat. Theor. M., 48 (2019), 3044-3054]. Moreover, the author obtains a new theorem of mean convergence for weighted sums of negatively superadditive-dependent random variables, which was not considered in Yang et al. (2019).



    加载中


    [1] J. H. B. Kemperman, On the FKG-inequalities for measures on a partially ordered space, Indagat. Math., 80 (1977), 313–331. https://doi.org/10.1016/1385-7258(77)90027-0 doi: 10.1016/1385-7258(77)90027-0
    [2] T. Z. Hu, Negatively superadditive dependence of random variables with applications, Chinese J. Appl. Probab. Statist., 16 (2000), 133–144.
    [3] K. J. Dev, F. Proschan, Negative association of random variables with applications, Ann. Statist., 11 (1983), 286–295. https://doi.org/10.1214/aos/1176346079 doi: 10.1214/aos/1176346079
    [4] T. C. Christofides, E. Vaggelatou, A connection between supermodular ordering and positive/negative association, J. Multivariate Anal., 88 (2004), 138–151. https://doi.org/10.1016/s0047-259x(03)00064-2 doi: 10.1016/s0047-259x(03)00064-2
    [5] N. Eghbal, M. Amini, A. Bozorgnia, Some maximal inequalities for quadratic forms of negative superadditive dependence random variables, Statist. Probabil. Lett., 80 (2010), 587–591. https://doi.org/10.1016/j.spl.2009.12.014 doi: 10.1016/j.spl.2009.12.014
    [6] Y. Shen, X. J. Wang, W. Z. Yang, S. H. Hu, Almost sure convergence theorem and strong stability for weighted sums of NSD random variables, Acta Math. Sin., 29 (2013), 743–756. https://doi.org/10.1007/s10114-012-1723-6 doi: 10.1007/s10114-012-1723-6
    [7] X. J. Wang, X. Deng, L. L. Zheng, S. H. Hu, Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications, Statistics, 48 (2014), 834–850. https://doi.org/10.1080/02331888.2013.800066 doi: 10.1080/02331888.2013.800066
    [8] N. Eghbal, M. Amini, A. Bozorgnia, On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables, Scienceasia, 81 (2011), 1112–1120. https://doi.org/10.1016/j.spl.2011.03.005 doi: 10.1016/j.spl.2011.03.005
    [9] X. J. Wang, A. T. Shen, Z. Y. Chen, S. H. Hu, Complete convergence for weighted sums of NSD random variables and its application in the EV regression model, Test, 24 (2015), 166–184. https://doi.org/10.1007/s11749-014-0402-6 doi: 10.1007/s11749-014-0402-6
    [10] Y. C. Yu, H. C. Hu, L. Liu, S. Y. Huang, M-test in linear models with negatively superadditive dependent errors, J. Inequal. Appl., 235 (2017), 235. https://doi.org/10.1186/s13660-017-1509-6 doi: 10.1186/s13660-017-1509-6
    [11] A. T. Shen, X. H. Wang, Kaplan-Meier estimator and hazard estimator for censored negatively superadditive dependent data, Statistics, 50 (2016), 377–388. https://doi.org/10.1080/02331888.2015.1038269 doi: 10.1080/02331888.2015.1038269
    [12] H. Naderi, F. Boukhari, P. Matula, A note on the weak law of large numbers for weighted negatively superadditive dependent random variables, Commun. Stat. Theor. M., 51 (2022), 7465–7475. https://doi.org/10.1080/03610926.2021.1873377 doi: 10.1080/03610926.2021.1873377
    [13] S. C. Ta, C. M. Tran, D. V. Le, On the almost sure convergence for sums of negatively superadditive dependent random vectors in Hilbert spaces and its application, Commun. Stat. Theor. M., 49 (2020), 2770–2786. https://doi.org/10.1080/03610926.2019.1584304 doi: 10.1080/03610926.2019.1584304
    [14] X. H. Wang, S. H. Hu, On the strong consistency of M-estimates in linear models for negatively superadditive dependent errors, Aust. Nz. J. Stat., 57 (2015), 259–274. https://doi.org/10.1111/anzs.12117 doi: 10.1111/anzs.12117
    [15] Y. Wu, X. J. Wang, S. H. Hu, Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications, Appl. Math. Ser. B, 31 (2016), 439–457. https://doi.org/10.1007/s11766-016-3406-z doi: 10.1007/s11766-016-3406-z
    [16] X. H. Wang, X. Q. Li, S. H. Hu, On the complete convergence of weighted sums for an array of rowwise negatively superadditive dependent random variables, Scienceasia, 42 (2016), 66–74. https://doi.org/10.2306/scienceasia1513-1874.2016.42.066 doi: 10.2306/scienceasia1513-1874.2016.42.066
    [17] X. Deng, X. J. Wang, Y. Wu, Y. Ding, Complete moment convergence and complete convergence for weighted sums of NSD random variables, Racsam. Rev. R. Acad. A., 110 (2016), 97–120. https://doi.org/10.1007/s13398-015-0225-7 doi: 10.1007/s13398-015-0225-7
    [18] A. T. Shen, X. H. Wang, H. Y. Zhu, Convergence properties for weighted sums of NSD random variables, Commun. Stat. Theor. M., 45 (2016), 2402–2412. https://doi.org/10.1080/03610926.2014.881492 doi: 10.1080/03610926.2014.881492
    [19] A. Kheyri, M. Amini, H. Jabbari, A. Bozorgnia, Kernel density estimation under negative superadditive dependence and its application for real data, J. Stat. Comput. Sim., 89 (2019), 2373–2392. https://doi.org/10.1080/00949655.2019.1619738 doi: 10.1080/00949655.2019.1619738
    [20] B. Meng, Q. Y. Wu, D. C. Wang, On the strong convergence for weighted sums of negatively superadditive dependent random variables, J. Inequal. Appl., 269 (2017), 269. https://doi.org/10.1080/03610918.2022.2093371 doi: 10.1080/03610918.2022.2093371
    [21] K. Bertin, S. Torres, L. Viitasaari, Least-square estimators in linear regression models under negatively superadditive dependent random observations, Statistics, 55 (2021), 1018–1034. https://doi.org/10.1080/02331888.2021.1993854 doi: 10.1080/02331888.2021.1993854
    [22] M. Q. Chen, K. Chen, Z. J. Wang, Z. L. Lu, X. J. Wang, Complete moment convergence for partial sums of arrays of rowwise negatively superadditive dependent random variables, Commun. Stat. Theor. M., 49 (2020), 1158–1173. https://doi.org/10.1080/03610926.2018.1554136 doi: 10.1080/03610926.2018.1554136
    [23] Y. C. Yu, X. S. Liu, L. Liu, W. S. Liu, On adaptivity of wavelet thresholding estimators with negatively super-additive dependent noise, Math. Slovaca, 69 (2019), 1485–1500. https://doi.org/10.1515/ms-2017-0324 doi: 10.1515/ms-2017-0324
    [24] W. Z. Yang, L. Yang, D. Wei, S. H. Hu, The laws of large numbers for Pareto-type random variables with infinite means, Commun. Stat. Theor. M., 48 (2019), 3044–3054. https://doi.org/10.1080/03610926.2018.1473602 doi: 10.1080/03610926.2018.1473602
    [25] A. Adler, Laws of large numbers for two tailed Pareto random variables, Probab. Math. Stat., 28 (2008), 121–128.
    [26] A. Adler, An exact weak law of large numbers, Bull. Inst. Math. Acad., 7 (2012), 417–422.
    [27] A. Adler, Exact weak laws and one side strong laws, Bull. Inst. Math. Acad., 12 (2017), 103–124.
    [28] A. Adler, One sided strong laws for random variables with infnite mean, Open Math., 15 (2017), 828–832. https://doi.org/10.1515/math-2017-0070 doi: 10.1515/math-2017-0070
    [29] K. Matsumoto, T. Nakata, Limit theorems for a generalized Feller game, J. Appl. Probab., 50 (2013), 54–63. https://doi.org/10.1239/jap/1363784424 doi: 10.1239/jap/1363784424
    [30] T. Nakata, Limit theorems for nonnegative independent random variables with truncation, Acta Math. Hung., 145 (2015), 1–16. https://doi.org/10.1007/s10474-014-0474-5 doi: 10.1007/s10474-014-0474-5
    [31] T. Nakata, Weak laws of large numbers for weighted independent random variables with infnite mean, Statist. Probabil. Lett., 109 (2016), 124–129. https://doi.org/10.1016/j.spl.2015.11.017 doi: 10.1016/j.spl.2015.11.017
    [32] Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theor. Probab., 13 (2000), 343–355. https://doi.org/10.1023/A:1007849609234 doi: 10.1023/A:1007849609234
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1453) PDF downloads(316) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog