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1. Introduction

Notation: For two sequences of positive constants {an, n ≥ 1} and {bn, n ≥ 1}, symbols an ∼ bn,
an = O(bn) and an = o(bn) stand for lim an/bn = 1, lim an/bn ∈ (0,∞) and lim an/bn = 0, respectively.

For simplicity, we shall write
P
−→,

a.s.
−→ and

Lp

−→ to express the convergence in probability, the almost
certain convergence and p-mean convergence, respectively.

The following concept of superadditive function was introduced in [1].

Definition 1.1. A function φ : Rn → R is called superadditive if φ(x∨ y) + φ(x∧ y) ≥ φ(x) + φ(y) for all
x, y ∈ Rn, where ∨ is for componentwise maximum and ∧ is for componentwise minimum.

Hu [2] introduced the concept of negatively superadditive-dependent (NSD) based on the above
concept of superadditive function.

Definition 1.2. A random vector X = (X1, X2, · · · , Xn) is said to be NSD if

Eφ(X1, X2, · · · , Xn) ≤ Eφ(X∗1, X
∗
2, · · · , X

∗
n),

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231291


25312

where X∗1, X
∗
2, · · · , X

∗
n are independent such that X∗i and Xi have the same distribution for each i and φ is

a superadditive function such that the expectations in the above equation exists. A sequence {Xn, n ≥ 1}
of random variables is said to be NSD if for each n ≥ 1, (X1, X2, · · · , Xn) is NSD.

Hu [2] established some basic properties and three structural theorems of NSD random
variables. An interesting example was also presented in [2], which illustrated that NSD is not
necessarily negatively associated (NA, [3]). Christofides and Vaggelatou [4] showed that NA is NSD.
Eghbal et al. [5] derived two maximal inequalities and strong law of large numbers of quadratic forms
of NSD random variables. Shen et al. [6] studied almost sure convergence and strong stability for
weighted sums of NSD random variables. Wang et al. [7] studied complete convergence for arrays of
rowwise NSD random variables, with applications to nonparametric regression. For more research of
the limit theory for NSD random variables, the author can refer the reader to [8–24].

NA random variable has been studied many times and attracted extensive attention, so it is very
significant to investigate the limit theorems of this wider NSD class, which is highly desirable and of
considerable significance in theory and application.

A random variable X is called to be a two-tailed Pareto distribution whose density is

f (x) =


q
x2 if x ≤ −1,

0 if − 1 < x < 1,
p
x2 if x ≥ 1,

(1.1)

where p + q = 1.
Let {Xn, n ≥ 1} be independent Pareto-Zipf random variables satisfying P(Xn = 0) = 1 − 1/n,

P(Xn ≤ x) = 1 −
1

x + n
for all x > 0, (1.2)

and fXn(x) = 1
(x+n)2 I(x > 0).

Obviously, if the random variable Xn satisfies Eq (1.1) or (1.2), then E|Xn| = ∞, n ≥ 1. Alder [25]
considered independent and identically distributed (i.i.d.) random variables satisfying Eq (1.1) and
studied the strong law of large numbers. Alder [26] obtained the weak law of large numbers for
Pareto-Zipf random variables. For more research on laws of large numbers for i.i.d. random variables
with infinite mean, the author can refer to works of Adler [27, 28] and Matsumoto and Nakata [29–31].

Yang et al. [24] investigated the law of large numbers for NSD random variables satisfying Pareto-
type distributions with infinite means, and obtained the following theorems which extend and improve
the corresponding ones in [25, 26]:

Theorem 1.1. Let {Xn, n ≥ 1} be a nonnegative sequence of NSD random variables whose distributions
are defined by P(Xn = 0) = 1 − 1/cn for n ≥ 1 and the tail probability

P(Xn > x) =
1

x + cn
for all x > 0 and n ≥ 1, (1.3)

where {cn} is a nondecreasing constant sequence with cn ≥ 1 and

Cn =

n∑
j=1

1
c j
→ ∞. (1.4)
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Then we have ∑n
j=1 c−1

j X j

Cn log Cn

P
−→ 1. (1.5)

Theorem 1.2. Let {Xn, n ≥ 1} be a sequence of NSD random variables with the same distributions
from a two-tailed Pareto distribution defined by Eq (1.1). Then for all β > 0 we have

1
logβ n

n∑
j=1

logβ−2 j
j

X j
a.s.
−→

p − q
β

. (1.6)

In the current work, the author studies the weak and strong laws of large numbers for NSD
random variables. The obtained results in this article extend and improve Theorems 1.1 and 1.2.
Meanwhile, the author investigates p-mean convergence for NSD random variables under some
appropriate conditions, which was not considered in [24].

Throughout this paper, the symbol C denotes a positive constant which may differ from one place
to another. The symbol I(A) denotes the indicator function of the event A.

2. Some lemmas and main results

To prove our main results, we first present some technical lemmas.

Lemma 2.1. ([2]) If (X1, X2, · · · , Xn) is NSD and f1, f2, · · · , fn are all non decreasing, then ( f1(X1),
f2(X2), · · · , fn(Xn)) is also NSD.

As we know, moment inequalities are very important tools in establishing the limit theorems for
sequences of random variables. Shen et al. [6] presented the following Marcinkiewicz-Zygmund
inequality with exponent 2.

Lemma 2.2. ([6]) Let {Xn, n ≥ 1} be a sequence of NSD random variables with EXn = 0 and EX2
n < ∞

for n ≥ 1. Then

E

(
max
1≤k≤n

( k∑
i=1

Xi

)2)
≤ 2

n∑
i=1

EX2
i , n ≥ 1.

By means of similar methods in Shao [32], Wang et al. [7] established the following Rosenthal-
type maximal inequality, which is very useful in establishing the convergence properties for NSD
random variables:

Lemma 2.3. ([7]) Let p > 1. Let {Xn, n ≥ 1} be a sequence of NSD random variables with E|Xi|
p < ∞

for each i ≥ 1. Then for all n ≥ 1,

E

(
max
1≤k≤n

∣∣∣∣∣∣ k∑
i=1

Xi

∣∣∣∣∣∣p
)
≤ 23−p

n∑
i=1

E|Xi|
p f or 1 < p ≤ 2

and

E

(
max
1≤k≤n

∣∣∣∣∣∣ k∑
i=1

Xi

∣∣∣∣∣∣p
)
≤ 2

(
15p
ln p

)p[ n∑
i=1

E|Xi|
p +

(
EX2

i

)p/2]
f or p > 2.
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Lemma 2.4. ([6]) Let {Xn, n ≥ 1} be a sequence of NSD random variables. If
∞∑

n=1

Var(Xn) < ∞,

then
∑∞

n=1(Xn − EXn) almost certainly converges.

Now we state our main results and the proofs will be presented in next section.

Theorem 2.1. Let {Xn, n ≥ 1} be a nonnegative sequence of NSD random variables whose distributions
are defined by P(Xn = 0) = 1 − 1/cn for n ≥ 1 and the tail probability

P(Xn > x) =
1

x + cn
for all x > 0 and n ≥ 1, (2.1)

where {cn, n ≥ 1} is a nondecreasing constant sequence with cn ≥ 1 and

Cn =

n∑
j=1

1
c j
→ ∞. (2.2)

Let {Dn, n ≥ 1} be a sequence of constants satisfying Dn → ∞ and Cn = o(Dn). Then we have

1
Dn

max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j (X j − EXn j)

∣∣∣∣∣∣ P
−→ 0, (2.3)

where Xn j = X jI(X j ≤ Dnc j) + Dnc jI(X j > Dnc j), 1 ≤ j ≤ n.

Take Dn = Cn log Cn, then we can obtain the following corollary which extends Theorem 1.1.

Corollary 2.1. Let {Xn, n ≥ 1} be a nonnegative sequence of NSD random variables whose
distributions are defined by P(Xn = 0) = 1 − 1/cn for n ≥ 1 and the tail probability Eq (2.1),
where {cn, n ≥ 1} is a nondecreasing constant sequence satisfying cn ≥ 1 and Eq (2.2). Then

1
Cn log Cn

max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j (X j − EXn j)

∣∣∣∣∣∣ P
−→ 0. (2.4)

Remark 2.1. Yang et al. [24] proved that

1
Cn log Cn

n∑
j=1

c−1
j EX jI(X j ≤ c jCn log Cn)→ 1

and
1

Cn log Cn

n∑
j=1

c−1
j E

(
c jCn log CnI(X j > c jCn log Cn)

)
=

n∑
j=1

P(X j > c jCn log Cn)→ 0,

which yields
1

Cn log Cn

n∑
j=1

c−1
j EXn j → 1.

Then we can find that Theorem 1.1 is a special case of Corollary 2.1 for k = n. Therefore, Theorem 2.1
and Corollary 2.1 extend and improve Theorem 1.1.
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Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of identically distributed NSD random variables.
Let {dn, n ≥ 1} be a sequence of positive constants satisfying dn ↑ ∞, and {cn, n ≥ 1} be a sequence of
positive constants such that ϕ(n) ≡ cndn satisfies ϕ(n)→ ∞ as n→ ∞,

∞∑
m=n

1
ϕ2(m)

= O
(
nϕ−2(n)

)
(2.5)

and
∞∑

n=1

P(|X1| > ϕ(n)) < ∞. (2.6)

Then
1
dn

n∑
j=1

c−1
j (X j − EX̃ j) −→ 0 a.s., (2.7)

where X̃ j = −ϕ( j)I(X j < −ϕ( j)) + X jI(|X j| ≤ ϕ( j)) + ϕ( j)I(X j > ϕ( j)), 1 ≤ j ≤ n.

Remark 2.2. We will show that Theorem 1.2 is a special case of Theorem 2.2. In fact, if we assume
that {Xn, n ≥ 1} is a sequence of NSD random variables with the same distributions from a two-
tailed Pareto distribution defined by Eq (1.1), and take cn = n log2−β n and dn = logβ n (β > 0), then
ϕ(n) = cndn = n log2 n. We can verify that ϕ(n) = n log2 n satisfies the conditions stated in Theorem 2.2.

First, it is clear that ϕ(n) = n log2 n satisfies ϕ(n)→ ∞ as n→ ∞.
Second, we have by standard calculations that

∞∑
m=n

1
ϕ2(m)

∼

∫ ∞

n

1
x2 log4 x

dx = O
(
n−1 log−4(n)

)
= O

(
nϕ−2(n)

)
,

which shows that Eq (2.5) is verified.
Next, we have by Eq (1.1) and ϕ(n) = n log2 n that

∞∑
n=1

P(|X1| > ϕ(n)) =

∞∑
n=1

P(|X1| > n log2 n)

=

∞∑
n=1

(∫ −n log2 n

−∞

qx−2dx +

∫ ∞

n log2 n
px−2dx

)
=

∞∑
n=1

p + q
n log2 n

=

∞∑
n=1

1
n log2 n

< ∞

and then Eq (2.6) is verified.
Finally, we also obtain by Eq (1.1) and ϕ( j) = j log2 j that

1
dn

n∑
j=1

c−1
j EX̃ j =

1
dn

n∑
j=1

(
−d jP(X j < −ϕ( j)) + c−1

j EX jI(|X j| < ϕ( j)) + d jP(X j > ϕ( j))
)

=
p − q
logβ n

n∑
j=1

logβ−2 j
j

+
p − q
logβ n

n∑
j=1

logβ−1 j
j

= : J1 + J2.
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By similar argument as in the proof of H → 0 in [24], we can obtain J1 → 0. By similar argument
as in the proof of Eq (3.5) in [24], we can prove J2 →

p−q
β

. Then we obtain by Eq (2.7) that

1
logβ n

n∑
j=1

logβ−2 j
j

X j
a.s.
−→

p − q
β

.

To sum up, Theorem 1.2 is a special case of Theorem 2.2 and then Theorem 2.2 extends Theorem 1.2.

Next, we present a new theorem of p-mean convergence for NSD random variables under some
appropriate conditions, which was not considered in [24–26].

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of NSD random variables satisfying

lim
x→∞

sup
j≥1

xαP(|X j| > x) < ∞, α ∈ (1, 2). (2.8)

Let {dn, n ≥ 1} be a sequence of positive constants satisfying dn ↑ ∞, and {cn, n ≥ 1} be a sequence of
positive constants such that c j ≥ 1 and

n∑
j=1

c−αj = o(dαn ). (2.9)

Then for p ∈ (1, α),
1
dn

max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j (X j − EX̂n j)

∣∣∣∣∣∣ Lp

−→ 0, (2.10)

where X̂n j = −dnc jI(X j < −dnc j) + X jI(|X j| ≤ dnc j) + dnc jI(X j > dnc j), 1 ≤ j ≤ n.

3. The proofs

Proof of Theorem 2.1. We first observe that for every ε > 0,

P

(
1

Dn
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j (X j − EXn j)

∣∣∣∣∣∣ > 2ε
)

≤ P

(
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j (X j − Xn j)

∣∣∣∣∣∣ > Dnε

)
+ P

(
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j (Xn j − EXn j)

∣∣∣∣∣∣ > Dnε

)
= : H1 + H2.

To prove Eq (2.3), we need only to show that Hi → 0 as n → ∞, i = 1, 2. For H1, we have by the
definition of Xn j, Cn = o(Dn), Eqs (2.1) and (2.2) that

H1 ≤ P

( n⋃
j=1

(X j , Xn j)
)
≤

n∑
j=1

P(X j > Dnc j)

=

n∑
j=1

1
Dnc j + c j

=
1

Dn + 1

n∑
j=1

c−1
j =

Cn

Dn + 1
→ 0.
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For fixed n ≥ 1, Xn j is the nondecreasing function of X j. Hence, it follows by Lemma 2.1 that
{Xn j, 1 ≤ j ≤ n} is a sequence of NSD random variables. Hence we have by Markov’s inequality and
Lemma 2.3 with 1 < p ≤ 2,

H2 ≤
C
Dp

n
E

(
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j (Xn j − EXn j)

∣∣∣∣∣∣
)p

≤
C
Dp

n

n∑
j=1

c−p
j E|Xn j|

p

=
C
Dp

n

n∑
j=1

c−p
j E|X j|

pI(X j ≤ Dnc j) + C
n∑

j=1

P(X j > Dnc j)

=
C
Dp

n

n∑
j=1

c−p
j

∫ (Dnc j)p

0
P(|X j|

pI(X j ≤ Dnc j) ≥ t)dt + C
n∑

j=1

1
Dnc j + c j

=
C
Dp

n

n∑
j=1

c−p
j

∫ (Dnc j)p

0
P(|X j|

p ≥ t)dt + C
Cn

Dn + 1

=
C
Dp

n

n∑
j=1

c−p
j

∫ (Dnc j)p

0

1
t1/p + c j

dt + C
Cn

Dn + 1
(by (2.1) )

≤
C
Dp

n

n∑
j=1

c−p
j

∫ (Dnc j)p

0

1
t1/p dt + C

Cn

Dn + 1

= C
Cn

Dn
+ C

Cn

Dn + 1
→ 0.

The proof is completed.
Proof of Theorem 2.2. Obviously, to prove Eq (2.7), we need only to show

1
dn

n∑
j=1

c−1
j
(
X j − X̃ j

)
−→ 0 a.s. (3.1)

and
1
dn

n∑
j=1

c−1
j
(
X̃ j − EX̃ j

)
−→ 0 a.s.. (3.2)

By Eq (2.6), dn ↑ ∞ and the Borel-Cantelli lemma, we obtain

1
dn

n∑
j=1

c−1
j |X j|I(|X j| > ϕ( j)) −→ 0 a.s..

Noting that
|X j + ϕ( j)|I(X j < −ϕ( j)) + |X j − ϕ( j)|I(X j > ϕ( j)) ≤ |X j|I(|X j| > ϕ( j)).

Then ∣∣∣∣∣∣ 1
dn

n∑
j=1

c−1
j (X j − X̃ j)

∣∣∣∣∣∣
AIMS Mathematics Volume 8, Issue 11, 25311–25324.
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=

∣∣∣∣∣∣ 1
dn

n∑
j=1

c−1
j X jI(|X j| > ϕ( j)) + (X j + ϕ( j))I(X j < −ϕ( j)) + (X j − ϕ( j))I(X j > ϕ( j))

∣∣∣∣∣∣
≤

2
dn

n∑
j=1

c−1
j |X j|I(|X j| > ϕ( j)) −→ 0 a.s.,

which yields Eq (3.1).
It follows by the definition of X̃ j that

∞∑
j=1

1
ϕ2( j)

E
(
X̃ j − EX̃ j

)2
≤ C

∞∑
j=1

1
ϕ2( j)

EX2
j I(|X j| ≤ ϕ( j)) + C

∞∑
j=1

P(|X j| > ϕ( j))

= : I1 + I2.

We obtain directly by Eq (2.6) that I2 < ∞. Let F(x) be the distribution of X1, then

I1 = C
∞∑
j=1

1
ϕ2( j)

EX2
1I(|X1| ≤ ϕ( j))

= C
∞∑
j=1

1
ϕ2( j)

∫ ∞

−∞

x2I(|X1| ≤ ϕ( j))dF(x)

= C
∫ ∞

−∞

x2
∑

j:ϕ( j)≥|x|

1
ϕ2( j)

dF(x). (3.3)

Define N(|x|) = ]{ j : ϕ( j) < |x|} and j∗ = inf{ j : ϕ( j) ≥ |x|}. Hence we can obtain N(|x|) ≥ j∗ − 1 and

∑
j:ϕ( j)≥|x|

1
ϕ2( j)

≤

∞∑
j= j∗

1
ϕ2( j)

≤ C
j∗

ϕ2( j∗)
(by Eq (2.5))

≤ C
j∗
x2

≤ C
N(|x|) + 1

x2 . (3.4)

It follows by Eqs (2.6), (3.3) and (3.4) that

I1 ≤ C
∫ ∞

−∞

(N(|x|) + 1) dF(x) = CEN(|X1|) + C

= CE
[ ∞∑

j=1

I(|X1| > ϕ( j))
]

+ C

= C
∞∑
j=1

P(|X1| > ϕ( j)) + C < ∞.
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Now we obtain by I1 < ∞ and I2 < ∞ that
∞∑
j=1

1
ϕ2( j)

E
(
X̃ j − EX̃ j

)2
< ∞. (3.5)

Consequently, by Lemma 2.4 and Eq (3.5), we get
∞∑
j=1

1
ϕ( j)

(
X̃ j − EX̃ j

)
converges a.s.,

which implies Eq (3.2) by Kronecker’s lemma, together with the condition dn ↑ ∞.
The proof is completed.

Proof of Theorem 2.3. Noting that

E

{
1
dn

max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j
(
X j − EX̂n j

)∣∣∣∣∣∣
}p

≤
1
dp

n
E

{
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j
(
X̂n j − EX̂n j

)∣∣∣∣∣∣
}p

+
1
dp

n
E

{
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j
(
X j − X̂n j

)∣∣∣∣∣∣
}p

≤
1
dp

n

{
E

(
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j
(
X̂n j − EX̂n j

)∣∣∣∣∣∣
)2}p/2

+
1
dp

n
E

{
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j
(
X j − X̂n j

)∣∣∣∣∣∣
}p

= : J1 + J2.

To prove Eq (2.10), it is sufficient to prove J1 → 0 and J2 → 0. By Lemma 2.1 and the fact that X̂n j is
the nondecreasing function of X j, {X̂n j, 1 ≤ j ≤ n} is also a sequence of NSD random variables.

We have by Lemma 2.2 that

J2/p
1 =

1
d2

n
E

{
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j
(
X̂n j − EX̂n j

)∣∣∣∣∣∣
}2

≤
C
d2

n

n∑
j=1

c−2
j E

(
X̂n j − EX̂n j

)2

≤
C
d2

n

n∑
j=1

c−2
j EX2

j I(|X j| ≤ dnc j) + C
n∑

j=1

P(|X j| > dnc j)

= : J3 + J4.

By dn ↑ ∞, Eqs (2.8) and (2.9), we have

J4 ≤ C
1
dαn

n∑
j=1

c−αj → 0 as n→ ∞. (3.6)

Now we will show J3 → 0. Observing

J3 =
C
d2

n

n∑
j=1

c−2
j

∫ (dnc j)2

0
P(X2

j I(|X j| ≤ dnc j) ≥ t)dt
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≤
C
d2

n

n∑
j=1

c−2
j

∫ (dnc j)2

0
P(X2

j ≥ t)dt.

Let t = u2, then

J3 ≤
C
d2

n

n∑
j=1

c−2
j

∫ dnc j

0
uP(|X j| ≥ u)du.

From Eq (2.8), we know that, there exists M > 0 and N0 ∈ N such that

P(|X j| ≥ u) ≤ Mu−α for u > N0. (3.7)

Since dn ↑ ∞ and c j ≥ 1, while n is sufficiently large, we can obtain dnc j > N0. Hence

J3 ≤
C
d2

n

n∑
j=1

c−2
j

∫ N0

0
uP(|X j| ≥ u)du +

CM
d2

n

n∑
j=1

c−2
j

∫ dnc j

N0

u1−αdu

= : J′3 + J′′3 .

By α < 2, c j ≥ 1 and Eq (2.9), we have

J′3 ≤
C
d2

n

n∑
j=1

c−2
j

∫ N0

0
udu ≤

C
d2

n

n∑
j=1

c−2
j

≤
C

d2−α
n

1
dαn

n∑
j=1

c−αj → 0 as n→ ∞

and

J′′3 ≤
C
d2

n

n∑
j=1

c−2
j
[
(dnc j)2−α − N2−α

0
]

≤
C
dαn

n∑
j=1

c−αj → 0 as n→ ∞.

Finally, we need only to show J2 → 0 as n→ ∞. Let

Zn j = X j − X̂n j = (X j + dnc j)I(X j < −dnc j) + (X j − dnc j)I(X j > dnc j).

We first prove that
EZn j → 0 as n→ ∞. (3.8)

Observing

|EZn j| ≤ E|Zn j| ≤ E|X j|I(|X j| > dnc j)

=

(∫ dnc j

0
+

∫ ∞

dnc j

)
P(|X j|I(|X j| > dnc j) ≥ t)dt

=

∫ dnc j

0
P(|X j| > dnc j)dt +

∫ ∞

dnc j

P(|X j| ≥ t)dt
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= dnc jP(|X j| > dnc j) +

∫ ∞

dnc j

P(|X j| ≥ t)dt

= : J5 + J6.

By Eq (3.7) and α > 1, we have

J5 ≤
M

(dnc j)α−1 → 0 as n→ ∞

and

J6 ≤ M
∫ ∞

dnc j

t−αdt ≤
CM

(dnc j)α−1 → 0 as n→ ∞,

which yields Eq (3.8). Therefore, we obtain by Lemma 2.3 that

J2 ≤
1
dp

n
E

{
max
1≤k≤n

∣∣∣∣∣∣ k∑
j=1

c−1
j
(
Zn j − EZn j

)∣∣∣∣∣∣
}p

≤
C
dp

n

n∑
j=1

c−p
j E|Zn j|

p

≤
C
dp

n

n∑
j=1

c−p
j E|X j|

pI(|X j| > dnc j). (by the definition of Zn j)

By similar arguments as in the proof of Eq (3.8), we can obtain

E|X j|
pI(|X j| > dnc j) = (dnc j)pP(|X j| > dnc j) +

∫ ∞

(dnc j)p
P(|X j|

p ≥ t)dt.

Then

J2 ≤ C
n∑

j=1

P(|X j| > dnc j) +
C
dp

n

n∑
j=1

c−p
j

∫ ∞

(dnc j)p
P(|X j|

p ≥ t)dt

= : J′2 + J′′2 .

By similar arguments as the proof of J4 → 0, we obtain J′2 → 0. We also have by Eq (3.7), p < α and
Eq (2.9) that

J′′2 ≤
C
dp

n

n∑
j=1

c−p
j

∫ ∞

(dnc j)p
t−α/pdt

≤
C
dαn

n∑
j=1

c−αj → 0 as n→ ∞.

The proof is completed.
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4. Conclusions

In this work the author investigated the limit theorems for negatively superadditive-dependent
random variables, and obtained some new results on the law of large numbers and mean convergence
under some appropriate conditions. As a future work, we propose to consider some other strong
convergence for sequence of negatively superadditive-dependent random variables.
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