We investigate the existence of multiple periodic solutions for a class of second order parameter-dependent equations of the form $ x''+f(t, x) = sp(t) $. We compare the behavior of its solutions with suitable linear and piecewise linear equations near positive infinity and infinity. Furthermore, in this context, the nonlinearity $ f $ does not satisfy the usual sign condition, and the global existence of solutions for the Cauchy problem associated to the equation is not guaranteed. Our approach is based on the Poincaré-Birkhoff twist theorem, a rotation number approach and the phase-plane analysis. Our result generalizes the result in Fonda and Ghirardelli [
Citation: Chunlian Liu, Shuang Wang. Multiple periodic solutions of second order parameter-dependent equations via rotation numbers[J]. AIMS Mathematics, 2023, 8(10): 25195-25219. doi: 10.3934/math.20231285
We investigate the existence of multiple periodic solutions for a class of second order parameter-dependent equations of the form $ x''+f(t, x) = sp(t) $. We compare the behavior of its solutions with suitable linear and piecewise linear equations near positive infinity and infinity. Furthermore, in this context, the nonlinearity $ f $ does not satisfy the usual sign condition, and the global existence of solutions for the Cauchy problem associated to the equation is not guaranteed. Our approach is based on the Poincaré-Birkhoff twist theorem, a rotation number approach and the phase-plane analysis. Our result generalizes the result in Fonda and Ghirardelli [
[1] | A. Fonda, L. Ghirardelli, Multiple periodic solutions of scalar second order differential equations, Nonlinear Anal., 72 (2010), 4005–4015. https://doi.org/10.1016/j.na.2010.01.032 doi: 10.1016/j.na.2010.01.032 |
[2] | A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93 (1972), 231–246. https://doi.org/10.1007/bf02412022 doi: 10.1007/bf02412022 |
[3] | M. Berger, E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1975), 837–846. https://doi.org/10.1512/iumj.1975.24.24066 doi: 10.1512/iumj.1975.24.24066 |
[4] | E. N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations, Bull. Austral. Math. Soc., 15 (1976), 321–328. https://doi.org/10.1017/S0004972700022747 doi: 10.1017/S0004972700022747 |
[5] | S. Fučík, Solvability of nonlinear equations and boundary value problems, Reidel, Dordrecht, 1980. |
[6] | C. Fabry, J. Mawhin, M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc., 18 (1986), 173–180. https://doi.org/10.1112/blms/18.2.173 doi: 10.1112/blms/18.2.173 |
[7] | R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Differ. Integral Equ., 3 (1990), 275–284. https://doi.org/10.57262/die/1371586143 doi: 10.57262/die/1371586143 |
[8] | J. Mawhin, Ambrosetti-Prodi type results in nonlinear boundary value problems, In: Differential equations and mathematical physics, Lecture Notes in Mathematics, Berlin: Springer, 1285 (1987), 290–313. https://doi.org/10.1007/bfb0080609 |
[9] | J. Mawhin, First order ordinary differential equations with several periodic solutions, Z. Angew. Math. Phys., 38 (1987), 257–265. https://doi.org/10.1007/bf00945410 doi: 10.1007/bf00945410 |
[10] | J. Mawhin, Riccati type differential equations with periodic coefficients, Proceedings of the Eleventh International Conference on Nonlinear Oscillations, Budapest, 1987,157–163. |
[11] | E. Sovrano, F. Zanolin, A periodic problem for first order differential equations with locally coercive nonlinearities, Rend. Istit. Mat. Univ. Trieste, 49 (2017), 335–355. https://doi.org/10.13137/2464-8728/16219 doi: 10.13137/2464-8728/16219 |
[12] | E. Sovrano, F. Zanolin, Ambrosetti-Prodi periodic problem under local coercivity conditions, Adv. Nonlinear Stud., 18 (2018), 169–182. https://doi.org/10.1515/ans-2017-6040 doi: 10.1515/ans-2017-6040 |
[13] | E. Sovrano, F. Zanolin, Nonlinear differential equations having non-sign-definite weights, Ph.D thesis, University of Udine in Udine, 2018. |
[14] | A. C. Lazer, P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 243–274. https://doi.org/10.1016/S0294-1449(16)30368-7 doi: 10.1016/S0294-1449(16)30368-7 |
[15] | A. C. Lazer, P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. https://doi.org/10.1137/1032120 doi: 10.1137/1032120 |
[16] | B. Zinner, Multiplicity of solutions for a class of superlinear Sturm-Liouville problems, J. Math. Anal. Appl., 176 (1993), 282–291. https://doi.org/10.1006/jmaa.1993.1213 doi: 10.1006/jmaa.1993.1213 |
[17] | C. Rebelo, F. Zanolin, Multiplicity results for periodic solutions of second order odes with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349–2389. |
[18] | C. Rebelo, F. Zanolin, Multiple periodic solutions for a second order equation with one-sided superlinear growth, Dynam. Cont. Dis. Ser. A, 2 (1996), 1–27. |
[19] | H. G. Kaper, M. K. Kwong, On two conjectures concerning the multiplicity of solutions of a Dirichlet problem, SIAM J. Math. Anal., 23 (1992), 571–578. https://doi.org/10.1137/0523029 doi: 10.1137/0523029 |
[20] | M. A. Del Pino, R. F. Manásevich, A. Murua, On the number of $2\pi$-periodic solutions for $u''+g(u) = s(1+h(t))$ using the Poincaré-Birkhoff theorem, J. Differ. Equations, 95 (1992), 240–258. https://doi.org/10.1016/0022-0396(92)90031-h doi: 10.1016/0022-0396(92)90031-h |
[21] | P. A. Binding, B. P. Rynne, Half-eigenvalues of periodic Sturm-Liouville problems, J. Differ. Equations, 206 (2004), 280–305. https://doi.org/10.1016/j.jde.2004.05.014 doi: 10.1016/j.jde.2004.05.014 |
[22] | C. Zanini, F. Zanolin, A multiplicity result of periodic solutions for parameter dependent asymmetric non-autonomous equations, Dyn. Contin. Dis. Ser. A, 12 (2005), 343–361. |
[23] | A. Fonda, L. Ghirardelli, Multiple periodic solutions of Hamiltonian systems in the plane, Topol. Methods Nonlinear Anal., 36 (2010), 27–38. |
[24] | A. Boscaggin, A. Fonda, M. Garrione, A multiplicity result for periodic solutions of second order differential equations with a singularity, Nonlinear Anal., 75 (2012), 4457–4470. https://doi.org/10.1016/j.na.2011.10.025 doi: 10.1016/j.na.2011.10.025 |
[25] | X. B. Shu, F. Xu, Y. Shi, S-asymptotically $\omega$-positive periodic solutions for a class of neutral fractional differential equations, Appl. Math. Comput., 270 (2015), 768–776. https://doi.org/10.1016/j.amc.2015.08.080 doi: 10.1016/j.amc.2015.08.080 |
[26] | A. Calamai, A. Sfecci, Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equ. Appl., 24 (2017), 1–17. https://doi.org/10.1007/s00030-016-0427-5 doi: 10.1007/s00030-016-0427-5 |
[27] | X. Ma, X. B. Shu, Existence of ahnost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay, Stoch. Dynam., 2 (2020), 2050003. https://doi.org/10.1142/S0219493720500033 doi: 10.1142/S0219493720500033 |
[28] | Y. Guo, M. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677 |
[29] | S. Wang, C. Liu, Multiplicity of periodic solutions for weakly coupled parametrized systems with singularities, Electron. Res. Arch., 31 (2023), 3594–3608. https://doi.org/10.3934/era.2023182 doi: 10.3934/era.2023182 |
[30] | A. Fonda, A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differ. Equations, 260 (2016), 2150–2162. https://doi.org/10.1016/j.jde.2015.09.056 doi: 10.1016/j.jde.2015.09.056 |
[31] | D. Qian, P. J. Torres, P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equations, 266 (2019), 4746–4768. https://doi.org/10.1016/j.jde.2018.10.010 doi: 10.1016/j.jde.2018.10.010 |
[32] | C. Liu, D. Qian, A new fixed point theorem and periodic solutions of nonconservative weakly coupled systems, Nonlinear Anal., 192 (2020), 111668. https://doi.org/10.1016/j.na.2019.111668 doi: 10.1016/j.na.2019.111668 |
[33] | C. Liu, D. Qian, P. J. Torres, Non-resonance and double resonance for a planar system via rotation numbers, Results Math., 76 (2021), 1–23. https://doi.org/10.1007/s00025-021-01401-w doi: 10.1007/s00025-021-01401-w |
[34] | S. Wang, D. Qian, Subharmonic solutions of indefinite Hamiltonian systems via rotation numbers, Adv. Nonlinear Stud., 21 (2021), 557–578. https://doi.org/10.1515/ans-2021-2134 doi: 10.1515/ans-2021-2134 |
[35] | S. Wang, D. Qian, Periodic solutions of p-Laplacian equations via rotation numbers, Commun. Pure Appl. Anal., 20 (2021), 2117–2138. https://doi.org/10.3934/cpaa.2021060 doi: 10.3934/cpaa.2021060 |
[36] | S. Wang, Periodic solutions of weakly coupled superlinear systems with indefinite terms, Nonlinear Differ. Equ. Appl., 29 (2022), 1–22. https://doi.org/10.1007/s00030-022-00768-1 doi: 10.1007/s00030-022-00768-1 |
[37] | C. Liu, S. Wang, Periodic solutions of indefinite planar systems with asymmetric nonlinearities via rotation numbers, Math. Meth. Appl. Sci., 46 (2023), 2869–2883. https://doi.org/10.1002/mma.8677 doi: 10.1002/mma.8677 |
[38] | S. Wang, C. Liu, Periodic solutions of superlinear planar Hamiltonian systems with indefinite terms, J. Appl. Anal. Comput., 2023. https://doi.org/10.11948/20220426 doi: 10.11948/20220426 |
[39] | J. K. Hale, Ordinary differential equations, 2 Eds., New York: Robert E. Krieger Publishing Company Inc., 1980. |
[40] | C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal., 29 (1997), 291–311. https://doi.org/10.1016/s0362-546x(96)00065-x doi: 10.1016/s0362-546x(96)00065-x |
[41] | D. Qian, P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707–1725. https://doi.org/10.1137/S003614100343771X doi: 10.1137/S003614100343771X |