This paper is concerned with a fractional Timoshenko system of order between one and two. We address the question of well-posedness in an appropriate space when the rotational component is viscoelastic or subject to a viscoelastic controller. To this end we use the notion of alpha-resolvent. Moreover, we prove that the memory term alone may stabilize the system in a Mittag-Leffler fashion. The system is Lyapunov stable or uniformly stable in the case of different speeds of propagation.
Citation: Banan Al-Homidan, Nasser-eddine Tatar. Fractional Timoshenko beam with a viscoelastically damped rotational component[J]. AIMS Mathematics, 2023, 8(10): 24632-24662. doi: 10.3934/math.20231256
This paper is concerned with a fractional Timoshenko system of order between one and two. We address the question of well-posedness in an appropriate space when the rotational component is viscoelastic or subject to a viscoelastic controller. To this end we use the notion of alpha-resolvent. Moreover, we prove that the memory term alone may stabilize the system in a Mittag-Leffler fashion. The system is Lyapunov stable or uniformly stable in the case of different speeds of propagation.
[1] | R. Agarwal, J. Dos Santos, C. Cuevas, Analytic resolvent operator and existence results for fractional integrodifferential equations, J. Abst. Diff. Eqs. Appl., 2 (2012), 26–47. |
[2] | A. Alikhanov, Boundary value problems for the diffusion equation of the variable order in differential and difference settings, Appl. Math. Comput., 219 (2012), 3938–3946. http://dx.doi.org/10.1016/j.amc.2012.10.029 doi: 10.1016/j.amc.2012.10.029 |
[3] | F. Ammar-Khodja, A. Benabdallah, J. Munoz Rivera, R. Racke, Energy decay for Timoshenko system of memory type, J. Differ. Equations, 194 (2003), 82–115. http://dx.doi.org/10.1016/S0022-0396(03)00185-2 doi: 10.1016/S0022-0396(03)00185-2 |
[4] | J. Anderson, S. Moradi, T. Rafiq, Non-linear Langevin and fractional Fokker-Planck equations for anomalous diffusion by Lévy stable processes, Entropy, 20 (2018), 760. http://dx.doi.org/10.3390/e20100760 doi: 10.3390/e20100760 |
[5] | V. Anh, J. Angulo, M. Ruiz-Medina, Diffusion on multifractals, Nonlinear Anal.-Theor., 63 (2005), 2043–2056. http://dx.doi.org/10.1016/j.na.2005.02.107 doi: 10.1016/j.na.2005.02.107 |
[6] | R. Ansari, M. Faraji Oskouie, F. Sadeghi, M. Bazdid-Vahdati, Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory, Physica E, 74 (2015), 318–327. http://dx.doi.org/10.1016/j.physe.2015.07.013 doi: 10.1016/j.physe.2015.07.013 |
[7] | T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics: vibrations and diffusion processes, London: John Wiley & Sons, 2014. |
[8] | J. Dos Santos, Fractional resolvent operator with $\alpha \in (0, 1)$ and applications, Frac. Diff. Calc., 9 (2019), 187–208. http://dx.doi.org/10.7153/fdc-2019-09-13 doi: 10.7153/fdc-2019-09-13 |
[9] | A. El-Sayed, M. Herzallah, Continuation and maximal regularity of an arbitrary (fractional) order evolutionary integro-differential equation, Appl. Anal., 84 (2005), 1151–1164. http://dx.doi.org/10.1080/0036810412331310941 doi: 10.1080/0036810412331310941 |
[10] | H. Fernandez Sare, R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221–251. http://dx.doi.org/10.1007/s00205-009-0220-2 doi: 10.1007/s00205-009-0220-2 |
[11] | J. Gallegos, M. Duarte-Mermoud, N. Aguila-Camacho, R. Castro-Linares, On fractional extensions of Barbalat lemma, Syst. Control Lett., 84 (2015), 7–12. http://dx.doi.org/10.1016/j.sysconle.2015.07.004 doi: 10.1016/j.sysconle.2015.07.004 |
[12] | M. Duarte-Mermoud, N. Aguila-Camacho, J. Gallegos, R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci., 22 (2015), 650–659. http://dx.doi.org/10.1016/j.cnsns.2014.10.008 doi: 10.1016/j.cnsns.2014.10.008 |
[13] | R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin: Springer, 2020. http://dx.doi.org/10.1007/978-3-662-61550-8 |
[14] | A. Greenenko, A. Chechkin, N. Shul'ga, Anomalous diffusion and Lévy flights in channelling, Phys. Lett. A, 324 (2004), 82–85. http://dx.doi.org/10.1016/j.physleta.2004.02.053 doi: 10.1016/j.physleta.2004.02.053 |
[15] | A. Guesmia, S. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Method. Appl. Sci., 32 (2009), 2102–2122. http://dx.doi.org/10.1002/mma.1125 doi: 10.1002/mma.1125 |
[16] | A. Jha, S. Dasgupta, Mathematical modeling of a fractionally damped nonlinear nanobeam via nonlocal continuum approach, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 7101–7115. http://dx.doi.org/10.1177/0954406219866467 doi: 10.1177/0954406219866467 |
[17] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[18] | M. Klanner, M. Prem, K. Ellermann, Steady-state harmonic vibrations of viscoelastic Timoshenko beams with fractional derivative damping models, Appl. Mech., 2 (2021), 797–819. http://dx.doi.org/10.3390/applmech2040046 doi: 10.3390/applmech2040046 |
[19] | R. Magin, Fractional calculus in bioengineering, California: Begell House Publishers, 2004. |
[20] | S. Messaoudi, B. Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl., 360 (2009), 459–475. http://dx.doi.org/10.1016/j.jmaa.2009.06.064 doi: 10.1016/j.jmaa.2009.06.064 |
[21] | S. Messaoudi, M. Mustafa, A stability result in a memory-type Timoshenko system, Dynam. Syst. Appl., 18 (2009), 457–468. |
[22] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339 (2000), 1–77. http://dx.doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3 |
[23] | F. Molz, G. Fix, S. Lu, A physical interpretation for the fractional derivative in Levy diffusion, Appl. Math. Lett., 15 (2002), 907–911. http://dx.doi.org/10.1016/S0893-9659(02)00062-9 doi: 10.1016/S0893-9659(02)00062-9 |
[24] | J. Munoz Rivera, H. Fernandez Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482–502. http://dx.doi.org/10.1016/j.jmaa.2007.07.012 doi: 10.1016/j.jmaa.2007.07.012 |
[25] | J. Munoz Rivera, R. Racke, Global stability for damped Timoshenko systems, Discrete Cont. Dyn., 9 (2003), 1625–1639. http://dx.doi.org/10.3934/dcds.2003.9.1625 doi: 10.3934/dcds.2003.9.1625 |
[26] | P. Paradisia, R. Cesari, F. Mainardi, F. Tampieri, The fractional Fick's law for non-local transport processes, Physica A, 293 (2001), 130–142. http://dx.doi.org/10.1016/S0378-4371(00)00491-X doi: 10.1016/S0378-4371(00)00491-X |
[27] | F. Pinnola, R. Barretta, F. de Sciarra, A. Pirrotta, Analytical solutions of viscoelastic nonlocal Timoshenko beams, Mathematics, 10 (2022), 477. http://dx.doi.org/10.3390/math10030477 doi: 10.3390/math10030477 |
[28] | A. Pirrotta, S. Cutrona, S. Di Lorenzo, A. Di Matteo, Fractional visco-elastic Timoshenko beam deflection via single equation, Int. J. Numer. Meth. Eng., 104 (2015), 869–886. http://dx.doi.org/10.1002/nme.4956 doi: 10.1002/nme.4956 |
[29] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. http://dx.doi.org/10.1016/s0076-5392(99)x8001-5 |
[30] | R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87 (2013), 377–392. http://dx.doi.org/10.1007/s00233-013-9474-y doi: 10.1007/s00233-013-9474-y |
[31] | Y. Povstenko, Fractional heat conduction equation and associated thermal stresses, J. Therm. Stresses, 28 (2004), 83–102. http://dx.doi.org/10.1080/014957390523741 doi: 10.1080/014957390523741 |
[32] | C. Raposo, J. Ferreira, M. Santos, N. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18 (2005), 535–541. http://dx.doi.org/10.1016/j.aml.2004.03.017 doi: 10.1016/j.aml.2004.03.017 |
[33] | S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives: theory and applications, Philadelphia: Gordon and Breach Science Publishers, 1993. |
[34] | W. Schneider, W. Wess, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134–144. http://dx.doi.org/10.1063/1.528578 doi: 10.1063/1.528578 |
[35] | A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal.-Real, 10 (2009), 1016–1020. http://dx.doi.org/10.1016/j.nonrwa.2007.11.019 doi: 10.1016/j.nonrwa.2007.11.019 |
[36] | V. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-14003-7 |
[37] | N. Tatar, Viscoelastic Timoshenko beams with occasionally constant relaxation functions, Appl. Math. Optim., 66 (2012), 123–145. http://dx.doi.org/10.1007/s00245-012-9167-z doi: 10.1007/s00245-012-9167-z |
[38] | N. Tatar, Exponential decay for a viscoelastically damped Timoshenko beam, Acta Math. Sci., 33 (2013), 505–524. http://dx.doi.org/10.1016/S0252-9602(13)60015-6 doi: 10.1016/S0252-9602(13)60015-6 |
[39] | N. Tatar, Stabilization of a viscoelastic Timoshenko beam, Appl. Anal., 92 (2013), 27–43. http://dx.doi.org/10.1080/00036811.2011.587810 doi: 10.1080/00036811.2011.587810 |
[40] | Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. http://dx.doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019 |