Research article

The moment exponential stability of infinite-dimensional linear stochastic switched systems

  • Received: 10 May 2023 Revised: 14 July 2023 Accepted: 07 August 2023 Published: 21 August 2023
  • MSC : 60H30, 93E15

  • This paper studies the 2nd-moment exponential stability of a class of infinite-dimensional linear stochastic switched systems comprising two unstable subsystems. We first construct an algebraic sufficient condition on the existence of multiple Lyapunov functions. Then, two switching strategies are designed to stabilize infinite-dimensional linear stochastic switched systems in terms of the multiple Lyapunov function method. Moreover, the system possesses good robust stability of the switching time with our switching strategies.

    Citation: Guojie Zheng, Taige Wang. The moment exponential stability of infinite-dimensional linear stochastic switched systems[J]. AIMS Mathematics, 2023, 8(10): 24663-24680. doi: 10.3934/math.20231257

    Related Papers:

  • This paper studies the 2nd-moment exponential stability of a class of infinite-dimensional linear stochastic switched systems comprising two unstable subsystems. We first construct an algebraic sufficient condition on the existence of multiple Lyapunov functions. Then, two switching strategies are designed to stabilize infinite-dimensional linear stochastic switched systems in terms of the multiple Lyapunov function method. Moreover, the system possesses good robust stability of the switching time with our switching strategies.



    加载中


    [1] Q. Lü, X. Zhang, Mathematical control theory for stochastic partial differential equations, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-82331-3
    [2] X. R. Mao, Stochastic differential equations and applications, 2 Eds., Horwood Publishing, 2007.
    [3] G. K. Basak, A. Bisi, M. K. Ghosh, Stability of a random diffusion with linear drift, J. Math. Anal. Appl., 202 (1996), 604–622. https://doi.org/10.1006/jmaa.1996.0336 doi: 10.1006/jmaa.1996.0336
    [4] H. Lin, P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automatic Control, 54 (2009), 308–322. https://doi.org/10.1109/TAC.2008.2012009 doi: 10.1109/TAC.2008.2012009
    [5] S. X. Luo, F. Q. Deng, Stabilization of hybrid stochastic systems in the presence of asynchronous switching and input delay, Nonlinear Anal. Hybrid Syst., 32 (2019), 254–266. https://doi.org/10.1016/j.nahs.2018.12.008 doi: 10.1016/j.nahs.2018.12.008
    [6] L. E. Shaikhet, Stability of stochastic hereditary systems with Markov switching, Theory Stoch. Pro., 2 (1996), 180–184.
    [7] A. R. Teel, A. Subbaraman, A. Sferlazza, Stability analysis for stochastic hybrid systems: A survey, Automatica, 50 (2014), 2435–2456. https://doi.org/10.1016/j.automatica.2014.08.006 doi: 10.1016/j.automatica.2014.08.006
    [8] F. B. Zhu, Z. Z. Han, J. F. Zhang, Stability analysis of stochastic differential equations with Markovian switching, Syst. Control Lett., 61 (2012), 1209–1214. https://doi.org/10.1016/j.sysconle.2012.08.013 doi: 10.1016/j.sysconle.2012.08.013
    [9] R. Zawiski, Stabilizability of nonlinear infinite dimensional switched systems by measures of noncompactness in the space $c_0$, Nonlinear Anal. Hybrid Syst., 25 (2017), 79–89. https://doi.org/10.1016/j.nahs.2017.03.004 doi: 10.1016/j.nahs.2017.03.004
    [10] M. J. Anabtawi, Practical stability of nonlinear stochastic hybrid parabolic systems of Itô-type: Vector Lyapunov functions approach, Nonlinear Anal. Real World Appl., 12 (2011), 1386–1400. https://doi.org/10.1016/j.nonrwa.2010.09.029 doi: 10.1016/j.nonrwa.2010.09.029
    [11] J. H. Bao, X. R. Mao, C. G. Yuan, Lyapunov exponents of hybrid stochastic heat equations, Syst. Control Lett., 61 (2012), 165–172. https://doi.org/10.1016/j.sysconle.2011.10.009 doi: 10.1016/j.sysconle.2011.10.009
    [12] L. P. Kadanoff, Statistical physics: Statics, dynamics and renormalization, World Scientific, 2000. https://doi.org/10.1142/4016
    [13] A. A. Kwiecinska, Almost sure and moment stability of stochastic partial differential equations, Probab. Math. Stat., 21 (2011), 405–415.
    [14] B. Xie, The moment and almost surely exponential stability of stochastic heat equations, Proc. Amer. Math. Soc., 136 (2008), 3627–3634. https://doi.org/10.1090/S0002-9939-08-09458-6 doi: 10.1090/S0002-9939-08-09458-6
    [15] G. J. Zheng, J. D. Xiong, X. Yu, C. Xu, Stabilization for infinite-dimensional switched linear systems, IEEE Trans. Automatic Control, 65 (2020), 5456–5463. https://doi.org/ 10.1109/TAC.2020.2972788 doi: 10.1109/TAC.2020.2972788
    [16] Y. C. Liu, Q. D. Zhu, Adaptive neural network asymptotic control design for MIMO nonlinear systems based on event-triggered mechanism, Inform. Sci., 603 (2022), 91–105. https://doi.org/10.1016/j.ins.2022.04.048 doi: 10.1016/j.ins.2022.04.048
    [17] M. S. Branicky, Multiple Lyapunov functions and other analysis for switched and hybrid systems, IEEE Trans. Automatic Control, 43 (1998), 475–482. https://doi.org/ 10.1109/9.664150 doi: 10.1109/9.664150
    [18] Z. K. She, B. Xue, Discovering multiple Lyapunov functions for switched hybrid systems, SIAM J. Control Optim., 52 (2014), 3312–3340. https://doi.org/10.1137/130934313 doi: 10.1137/130934313
    [19] R. Shorten, K. S. Narendra, O. Mason, A result on common quadratic Lyapunov functions, IEEE Trans. Automatic Control, 48 (2003), 110–113. https://doi.org/10.1109/TAC.2002.806661 doi: 10.1109/TAC.2002.806661
    [20] K. Yosida, Functional analysis, 6 Eds., Berlin, Heidelberg: Springer, 1980.
    [21] L. C. Evans, Partial differential equations, American Mathematical Society, 1998.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(904) PDF downloads(51) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog