This paper studies the 2nd-moment exponential stability of a class of infinite-dimensional linear stochastic switched systems comprising two unstable subsystems. We first construct an algebraic sufficient condition on the existence of multiple Lyapunov functions. Then, two switching strategies are designed to stabilize infinite-dimensional linear stochastic switched systems in terms of the multiple Lyapunov function method. Moreover, the system possesses good robust stability of the switching time with our switching strategies.
Citation: Guojie Zheng, Taige Wang. The moment exponential stability of infinite-dimensional linear stochastic switched systems[J]. AIMS Mathematics, 2023, 8(10): 24663-24680. doi: 10.3934/math.20231257
This paper studies the 2nd-moment exponential stability of a class of infinite-dimensional linear stochastic switched systems comprising two unstable subsystems. We first construct an algebraic sufficient condition on the existence of multiple Lyapunov functions. Then, two switching strategies are designed to stabilize infinite-dimensional linear stochastic switched systems in terms of the multiple Lyapunov function method. Moreover, the system possesses good robust stability of the switching time with our switching strategies.
[1] | Q. Lü, X. Zhang, Mathematical control theory for stochastic partial differential equations, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-82331-3 |
[2] | X. R. Mao, Stochastic differential equations and applications, 2 Eds., Horwood Publishing, 2007. |
[3] | G. K. Basak, A. Bisi, M. K. Ghosh, Stability of a random diffusion with linear drift, J. Math. Anal. Appl., 202 (1996), 604–622. https://doi.org/10.1006/jmaa.1996.0336 doi: 10.1006/jmaa.1996.0336 |
[4] | H. Lin, P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automatic Control, 54 (2009), 308–322. https://doi.org/10.1109/TAC.2008.2012009 doi: 10.1109/TAC.2008.2012009 |
[5] | S. X. Luo, F. Q. Deng, Stabilization of hybrid stochastic systems in the presence of asynchronous switching and input delay, Nonlinear Anal. Hybrid Syst., 32 (2019), 254–266. https://doi.org/10.1016/j.nahs.2018.12.008 doi: 10.1016/j.nahs.2018.12.008 |
[6] | L. E. Shaikhet, Stability of stochastic hereditary systems with Markov switching, Theory Stoch. Pro., 2 (1996), 180–184. |
[7] | A. R. Teel, A. Subbaraman, A. Sferlazza, Stability analysis for stochastic hybrid systems: A survey, Automatica, 50 (2014), 2435–2456. https://doi.org/10.1016/j.automatica.2014.08.006 doi: 10.1016/j.automatica.2014.08.006 |
[8] | F. B. Zhu, Z. Z. Han, J. F. Zhang, Stability analysis of stochastic differential equations with Markovian switching, Syst. Control Lett., 61 (2012), 1209–1214. https://doi.org/10.1016/j.sysconle.2012.08.013 doi: 10.1016/j.sysconle.2012.08.013 |
[9] | R. Zawiski, Stabilizability of nonlinear infinite dimensional switched systems by measures of noncompactness in the space $c_0$, Nonlinear Anal. Hybrid Syst., 25 (2017), 79–89. https://doi.org/10.1016/j.nahs.2017.03.004 doi: 10.1016/j.nahs.2017.03.004 |
[10] | M. J. Anabtawi, Practical stability of nonlinear stochastic hybrid parabolic systems of Itô-type: Vector Lyapunov functions approach, Nonlinear Anal. Real World Appl., 12 (2011), 1386–1400. https://doi.org/10.1016/j.nonrwa.2010.09.029 doi: 10.1016/j.nonrwa.2010.09.029 |
[11] | J. H. Bao, X. R. Mao, C. G. Yuan, Lyapunov exponents of hybrid stochastic heat equations, Syst. Control Lett., 61 (2012), 165–172. https://doi.org/10.1016/j.sysconle.2011.10.009 doi: 10.1016/j.sysconle.2011.10.009 |
[12] | L. P. Kadanoff, Statistical physics: Statics, dynamics and renormalization, World Scientific, 2000. https://doi.org/10.1142/4016 |
[13] | A. A. Kwiecinska, Almost sure and moment stability of stochastic partial differential equations, Probab. Math. Stat., 21 (2011), 405–415. |
[14] | B. Xie, The moment and almost surely exponential stability of stochastic heat equations, Proc. Amer. Math. Soc., 136 (2008), 3627–3634. https://doi.org/10.1090/S0002-9939-08-09458-6 doi: 10.1090/S0002-9939-08-09458-6 |
[15] | G. J. Zheng, J. D. Xiong, X. Yu, C. Xu, Stabilization for infinite-dimensional switched linear systems, IEEE Trans. Automatic Control, 65 (2020), 5456–5463. https://doi.org/ 10.1109/TAC.2020.2972788 doi: 10.1109/TAC.2020.2972788 |
[16] | Y. C. Liu, Q. D. Zhu, Adaptive neural network asymptotic control design for MIMO nonlinear systems based on event-triggered mechanism, Inform. Sci., 603 (2022), 91–105. https://doi.org/10.1016/j.ins.2022.04.048 doi: 10.1016/j.ins.2022.04.048 |
[17] | M. S. Branicky, Multiple Lyapunov functions and other analysis for switched and hybrid systems, IEEE Trans. Automatic Control, 43 (1998), 475–482. https://doi.org/ 10.1109/9.664150 doi: 10.1109/9.664150 |
[18] | Z. K. She, B. Xue, Discovering multiple Lyapunov functions for switched hybrid systems, SIAM J. Control Optim., 52 (2014), 3312–3340. https://doi.org/10.1137/130934313 doi: 10.1137/130934313 |
[19] | R. Shorten, K. S. Narendra, O. Mason, A result on common quadratic Lyapunov functions, IEEE Trans. Automatic Control, 48 (2003), 110–113. https://doi.org/10.1109/TAC.2002.806661 doi: 10.1109/TAC.2002.806661 |
[20] | K. Yosida, Functional analysis, 6 Eds., Berlin, Heidelberg: Springer, 1980. |
[21] | L. C. Evans, Partial differential equations, American Mathematical Society, 1998. |