Our main objective of this research is to study the dynamic transition for diffusive chemotactic systems modeled by Keller-Segel equations in a rectangular domain. The main tool used is the recently developed dynamic transition theory. Through a reduction analysis and focusing on systems with certain symmetry where double eigenvalue crossing occurs during the instability process, it is shown that the chemotactic system can undergo both continuous and jump type transitions from the steady states, depending on non-dimensional parameters $ \alpha $, $ \mu $ and the side length $ L_1 $ and $ L_2 $ of the container. Detailed dynamic structures during transition, including metastable and stable states and orbital connections between them, are rigorously obtained. This result extends the previous work with only one eigenvalue crossing at critical parameters and offers more complex insights given the symmetry of our settings.
Citation: Haiping Pan, Yiqiu Mao. Transition and bifurcation analysis for chemotactic systems with double eigenvalue crossings[J]. AIMS Mathematics, 2023, 8(10): 24681-24698. doi: 10.3934/math.20231258
Our main objective of this research is to study the dynamic transition for diffusive chemotactic systems modeled by Keller-Segel equations in a rectangular domain. The main tool used is the recently developed dynamic transition theory. Through a reduction analysis and focusing on systems with certain symmetry where double eigenvalue crossing occurs during the instability process, it is shown that the chemotactic system can undergo both continuous and jump type transitions from the steady states, depending on non-dimensional parameters $ \alpha $, $ \mu $ and the side length $ L_1 $ and $ L_2 $ of the container. Detailed dynamic structures during transition, including metastable and stable states and orbital connections between them, are rigorously obtained. This result extends the previous work with only one eigenvalue crossing at critical parameters and offers more complex insights given the symmetry of our settings.
[1] | E. O. Budrene, H. C. Berg, Complex patterns formed by motile cells of escherichia coli, Nature, 349 (1991), 630–633. https://doi.org/10.1038/349630a0 doi: 10.1038/349630a0 |
[2] | E. O. Budrene, H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49–53. https://doi.org/10.1038/376049a0 doi: 10.1038/376049a0 |
[3] | M. P. Brenner, L. S. Levitov, E. O. Budrene, Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J., 74 (1998), 1677–1693. https://doi.org/10.1016/S0006-3495(98)77880-4 doi: 10.1016/S0006-3495(98)77880-4 |
[4] | J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, In: Interdisciplinary applied mathematics, New York: Springer, 2001. https://doi.org/10.1007/b98869 |
[5] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[6] | T. Nagai, T. Senba, K. Yoshida, Application of the trudinger-moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40 (1997), 411–433. |
[7] | M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic keller-segel system, J. Math. Pure. Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020 |
[8] | F. Dai, B. Liu, Boundedness and asymptotic behavior in a keller-segel (-navier)-stokes system with indirect signal production, J. Differ. Equ., 314 (2022), 201–250. https://doi.org/10.1016/j.jde.2022.01.015 doi: 10.1016/j.jde.2022.01.015 |
[9] | K. Osaki, T. Tsujikawa, A. Yagi, M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119–144. https://doi.org/10.1016/S0362-546X(01)00815-X doi: 10.1016/S0362-546X(01)00815-X |
[10] | B. Perthame, C. Schmeiser, M. Tang, N. Vauchelet, Travelling plateaus for a hyperbolic keller-segel system with attraction and repulsion: Existence and branching instabilities, Nonlinearity, 24 (2011), 1253. https://doi.org/10.1088/0951-7715/24/4/012 doi: 10.1088/0951-7715/24/4/012 |
[11] | L. Ryzhik, B. Perthame, G. Nadin, Traveling waves for the keller-segel system with fisher birth terms, Interface. Free Bound., 10 (2008), 517–538. https://doi.org/10.4171/IFB/200 doi: 10.4171/IFB/200 |
[12] | P. Liu, J. Shi, Z. -A. Wang, Pattern formation of the attraction-repulsion keller-segel system, Discrete Cont. Dyn. Syst.-B, 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597 |
[13] | K. Kuto, K. Osaki, T. Sakurai, T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), 1629–1639. https://doi.org/10.1016/j.physd.2012.06.009 doi: 10.1016/j.physd.2012.06.009 |
[14] | M. X. Chen, Q. Q. Zheng, Steady state bifurcation of a population model with chemotaxis, Phys. A, 609 (2023), 128381. https://doi.org/10.1016/j.physa.2022.128381 doi: 10.1016/j.physa.2022.128381 |
[15] | M. X. Chen, H. M. Srivastava, Existence and stability of bifurcating solution of a chemotaxis model, Proc. Amer. Math. Soc., 2023. https://doi.org/10.1090/proc/16536 doi: 10.1090/proc/16536 |
[16] | M. X. Chen, R. C. Wu, Steady state bifurcation in previte-hoffman model, Internat. J. Bifur. Chaos, 33 (2023), 2350020. https://doi.org/10.1142/S0218127423500207 doi: 10.1142/S0218127423500207 |
[17] | M. X. Chen, R. C. Wu, Dynamics of a harvested predator-prey model with predator-taxis, Bull. Malays. Math. Sci. Soc., 46 (2023), 76. https://doi.org/10.1007/s40840-023-01470-w doi: 10.1007/s40840-023-01470-w |
[18] | T. Ma, S. H. Wang, Phase transition dynamics, Springer Cham, 2019. https://doi.org/10.1007/978-3-030-29260-7 |
[19] | C. Lu, Y. Q. Mao, T. Sengul, Q. Wang, On the spectral instability and bifurcation of the 2D-quasi-geostrophic potential vorticity equation with a generalized kolmogorov forcing, Phys. D, 403 (2020), 132296. https://doi.org/10.1016/j.physd.2019.132296 doi: 10.1016/j.physd.2019.132296 |
[20] | C. Lu, Y. Q. Mao, Q. Wang, D. M. Yan, Hopf bifurcation and transition of three-dimensional wind-driven ocean circulation problem, J. Differ. Equ., 267 (2019), 2560–2593. https://doi.org/10.1016/j.jde.2019.03.021 doi: 10.1016/j.jde.2019.03.021 |
[21] | D. Han, M. Hernandez, Q. Wang, Dynamic transitions and bifurcations for a class of axisymmetric geophysical fluid flow, SIAM J. Appl. Dyn. Syst., 20 (2021), 38–64. https://doi.org/10.1137/20M1321139 doi: 10.1137/20M1321139 |
[22] | Y. Q. Mao, D. M. Yan, C. Lu, Dynamic transitions and stability for the acetabularia whorl formation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5989–6004. https://doi.org/10.3934/dcdsb.2019117 doi: 10.3934/dcdsb.2019117 |
[23] | M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1016/0022-1236(71)90015-2 doi: 10.1016/0022-1236(71)90015-2 |
[24] | D. Henry, Geometric theory of semilinear parabolic equations, In: Lecture notes in mathematics, Heidelberg: Springer Berlin, 2006. https://doi.org/10.1007/BFb0089647 |
[25] | L. Perko, Differential equations and dynamical systems, In: Texts in applied mathematics, New York: Springer, 2013. https://doi.org/10.1007/978-1-4613-0003-8 |
[26] | T. Ma, S. H. Wang, Geometric theory of incompressible flows with applications to fluid dynamics, American Mathematical Soc., 2005. |
[27] | L. Li, Z. B. Hou, Y. Q. Mao, Dynamical transition and bifurcation of a diffusive predator-prey model with an allee effect on prey, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107433. https://doi.org/10.1016/j.cnsns.2023.107433 doi: 10.1016/j.cnsns.2023.107433 |