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Abstract: Our main objective of this research is to study the dynamic transition for diffusive
chemotactic systems modeled by Keller-Segel equations in a rectangular domain. The main tool used
is the recently developed dynamic transition theory. Through a reduction analysis and focusing on
systems with certain symmetry where double eigenvalue crossing occurs during the instability process,
it is shown that the chemotactic system can undergo both continuous and jump type transitions from
the steady states, depending on non-dimensional parameters α,µ and the side length L1 and L2 of the
container. Detailed dynamic structures during transition, including metastable and stable states and
orbital connections between them, are rigorously obtained. This result extends the previous work
with only one eigenvalue crossing at critical parameters and offers more complex insights given the
symmetry of our settings.
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1. Introduction

Chemotaxis is an important biological phenomenon, which is generated by two types of mobilities
of the species: one is random walking and the other is the chemically directed movement.
Several experiments have demonstrated regular patterns formed by bacterial colonies. For example,
experiments on bacteria Escherichia coli and Salmonella typhimurium [1, 2] demonstrated ringlike or
sunflower-like patterns when the bacteria were exposed to certain chemicals in both semi-solid and
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liquid medium. See also [3, 4].
Many models were put forward by various authors to explain chemically driven movement and

resulting patterns, see among others [4] and the references therein. We will focus on a so called Keller-
Segel model [5] describing the chemotactic behaviors of the slime mold amoebae, which ignores the
growth rate of amoeba cells, and is suitable for liquid medium experiments. There is already a vast
literature on the mathematical studies for the Keller-Segel model; notable works include studies on
blow up mechanisms and global boundedness of solutions [6–8], attractors [9], traveling waves [10,11].
There are also ample studies regarding bifurcation and pattern formations of the Keller Segel model.
See for example [12–15] and related articles [16, 17], where steady state and Hopf bifurcations are
studied. In this article, we will focus on dynamic change of orbits (which are called dynamic transition
in [18]) of Keller Segel models in a rectangular domain. Apart from single eigenvalue crossing case
studies in [18], this aspect of dynamics have not yet been looked into to the best of our knowledge.

Recently, a new theoretical framework describing instability processes has been put forward by Ma
and Wang [18]. Their work focuses on dynamic transitions (detailed orbital connection changes during
the instability processes). Notably a new classification system for dynamics during the transitions are
given. In sum, there are three types. The continuous type transition indicates a gradual change of states,
that is, the bifurcated states (involving steady states, periodic orbits or even complex attractors) change
continuously from the basic states when instability set place; the jump type transition shows more
rapid and abrupt changes; while the mixed transition is a combination of both. Readers are referred to
Chapter 2 of [18] for more details regarding this classification system, and various theoretical structures
built around it. This theory has been especially useful to explain dynamic details of instability processes
in various models, including geophysics, biology and statistical mechanics [18–22]. We note the main
tool of Ma and Wang’s framework is finite dimension reduction, hence this theory is not limited to odd
multiplicity eigenvalue crossings originally studied by Crandall and Rabinowitz [23].

In [18], two types of Keller-Segel models are addressed using the dynamic transition theory: the first
is a model for rich stimulant chemotactic systems (with rich nutrient supplies). The equations become
a two-component system in this case, describing the evolution of the population density of biological
individuals and the chemoattractant concentration. It is shown that the chemotactic system always
undergoes a continuous or jump type dynamic transition from the homogeneous state to steady state
solutions. The type of transition is dictated by the sign of a nondimensional parameter b. The second is
a more general Keller-Segel model where the stimulant is moderately supplied. In this case, the model
is a three-component system describing the evolution of population density of biological individuals,
the chemoattractant and the stimulant concentration. This system is shown to undergo a dynamic
transition to either steady state patterns or spatiotemporal oscillations. In both cases, the transition can
be of either continuous or jump type dictated, respectively, by two nondimensional parameters b0 and
b1.

However, only transitions that result from simple eigenvalue crossings are investigated in [18]. In
this article, we focus on the more involved case where the crossing eigenspace is two dimensional,
which typically occurs when certain symmetry exists, for example when the container is square
shaped. For simplicity, only a rich stimulant system with balanced diffusion and degradation case
is investigated. More general systems can be treated similarly, see Remark 3.2. As the result shows,
the chemotactic system can undergo both continuous and jump type dynamic transitions from the
homogeneous state depending on parameters µ, α associated with diffusion and growth rate and side
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length L1 and L2. More complex transition structures are seen (see Theorem 3.1) compared to a
single eigenvalue crossing case. For instance, when the transition is continuous, eight steady states
are bifurcated from the basic state and the orbit connections between them are displayed (orbital
connections were seldom looked into in previous studies). However if the transition is of jump type,
either four metastable states are bifurcated or no local bifurcations occur, though in the end, the
solutions will both undergo a more drastic change. Numeric evidences are provided to support the
theoretical findings and deliver more insights. We note our methods can be easily applied to similar
problems, or with different domain shapes, as is pointed in Remark 3.3.

The article is arranged as follows. Section 2 introduces the Keller Segel model with rich stimulant
and balanced diffusion-degradation. Section 3 calculates the local center manifold function that is
necessary for deriving the transition types, and states the main theorem about dynamic transition, with
remarks on different equation setups. Section 4 gives a summary of the major results and provides
numeric evidence and approximation solution plots to visualize the results.

2. Keller-Segel models

The non-dimensional form of the Keller-Segel model is given by (as is formulated in [18]
Chapter 6.4):

∂u1

∂t
= µ∆u1 − ∇(u1∇u2) + αu1

(
u3

1 + u3
− u2

1

)
,

∂u2

∂t
= ∆u2 − u2 + λu1,

∂u3

∂t
= r∆u3 − δu1u3 + δ0,

∂u
∂n

∣∣∣∣∣
∂Ω

= 0,

u(0) = u0 in Ω.

(2.1)

Here, the Ω is written as

Ω = (0, L1) × (0, L2),

u1 indicates the population density of biological individuals, u2 is the chemoattractant concentration,
u3 represents the stimulant or nutrient concentration and µ and r are the relative diffusion rate of the
biological species and the stimulant with respect to the chemoattractant. The parameter λ indicates the
secretion rate of the chemoattractant from the species, α is the relative growth parameter of the species,
δ and δ0 are related to the interaction between the species and the stimulant.
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2.1. Rich stimulant system

We know that as nutrient u3 is richly supplied, the Keller-Segel model (2.1) is reduced to a two-
component system:

∂u1

∂t
= µ∆u1 − ∇(u1∇u2) + αu1(1 − u2

1),

∂u2

∂t
= ∆u2 − u2 + λu1,

∂(u1, u2)
∂n

∣∣∣∣∣
∂Ω

= 0,

u(0) = u0.

(2.2)

It is easy to see that u∗ = (1, λ) is a steady state of (2.2). Consider the deviation from u∗:

u = u∗ + u′,

and suppressing the primes, the system (2.2) is then transformed into

∂u1

∂t
= µ∆u1 − 2αu1 − ∆u2 − ∇(u1∇u2) − 3αu2

1 − αu3
1,

∂u2

∂t
= ∆u2 − u2 + λu1,

∂(u1, u2)
∂n

∣∣∣∣∣
∂Ω

= 0,

u(0) = u0.

(2.3)

The global existence and attractors of the above system have been explored in detail in [9]. In this
article, we focus on an important case where the diffusion and degradation of the chemoattractant
secreted by the bacteria themselves are almost balanced by their production. In this case, the second
equation of (2.3) is given by

0 = ∆u2 − u2 + λu1.

Hence, the equation can be characterized by

∂u1

∂t
= Lλu1 + G(u1, λ), (2.4)

where the operators Lλ : H1 → H and G : H1 × R→ R are defined by

Lλu1 = µ∆u1 − 2αu1 − λ∆[−∆ + I]−1u1,

G(u1, λ) = −λ∇(u1∇[−∆ + I]−1u1) − 3αu2
1 − αu3

1.
(2.5)

Note, the above equation now becomes a nonlocal evoluionary PDE. Here, the two Hilbert spaces H
and H1 are defined by

H = L2(Ω), H1 = {u1 ∈ H2(Ω) |
∂u1

∂n
= 0 on Ω}.

It is then straightforward to see Lλ is a self-adjoint operator with compact resolvant, and G can be
viewed as a polynomial from H1/2 → H, where H1/2 = H1(Ω) is the interpolation space between H
and H1, hence the semi-group methods can be used and we view (2.4) as an dynamical system on H1/2

(or H, with less smooth trajectory).
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2.2. Eigensystem

First, consider the linearized eigenvalue problem of (2.4):

Lλe = β(λ)e. (2.6)

Let ρk and ek be the eigenvalues and eigenfunctions of −∆ with the Neumann boundary condition given
by

ek = cos
k1πx1

L1
cos

k2πx2

L2
, ρk = π2

(
k2

1

L2
1

+
k2

2

L2
2

)
, (2.7)

for any k = (k1, k2) ∈ N2. Here, N is the set of all nonnegative integers. In particular, e0 = 1 and ρ0 = 0.
Obviously, the functions in (2.7) are also eigenvectors of (2.6) and the corresponding eigenvalues

βk are

βk(λ) = −µρk − 2α +
λρk

1 + ρk
. (2.8)

Define a critical parameter by

λc = min
ρk

(ρk + 1)(µρk + 2α)
ρk

. (2.9)

Let

S =
{
k = (k1, k2) ∈ Z2

+ achieves the minimization in (2.8)
}
.

Then, it follows from (2.8) and (2.9) that

βk(λ)


< 0 if λ < λc

= 0 if λ = λc

> 0 if λ > λc

∀k = (k1, k2) ∈ S, (2.10)

βk(λc) < 0 ∀k ∈ N2 with k < S. (2.11)

3. Reduction of dynamics and dynamic transitions

The case where S contains only one element is considered in detail in [18]. Here, in this work, we
consider the case when S contains exactly two elements. This case is important as it illustrates the
dynamics and bifurcation of chemotaxis when certain symmetry exists, for example if the underlying
region is square, double eigenvalue crossing is quite generic.

It is straightforward to calculate the critical S sets for any particular side length L1 and L2 of
the region Ω. Figure 1 is a graph of critical wavenumbers varying L1 and L2, in which boundary
lines indicate double eigenvalue crossing. From this graph, it is clear that transitions generated by
multiple eigenvalue crossings play increasingly important roles when L1 and L2 are large , where
denser boundary lines are seen.
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L1

L 2

Figure 1. Critical wavenumbers {k1, k2} at transition with 0 ≤ L1 ≤ 20, 0 ≤ L2 ≤

20 and α = µ = 1. Different wavenumbers are represented by different colors. The
lighter color indicates higher wavenumbers. Boundary lines indicates double or higher
multiple eigenvalue crossings. The wavenumbers at left bottom corner are {0, 1} and {1, 0}
respectively.

A simple case when S contains exactly 2 elements is when Ω is a small square region with side
length L

0 < L2 <
π2√µ
√
α
.

In this case, λc remains to be the minimum only when k is chosen to be (0, 1) and (1, 0)∗.
Now denote the eigenfunctions in (2.10) as ΨK and we have:

ΨK = Ψ(k1,k2) = cos
k1πx1

L1
cos

k2πx2

L2
, (3.1)

then

||ΨK ||2 =


√

L1L2
2 if none of k1, k2 is 0,

√
L1L2√

2
if one of k1, k2 is 0,

√
L1L2 if both k1, k2 are 0.

(3.2)

∗Indeed if we replace ρk with t, then the RHS of (2.9) will become:

min
t

(t + 1)(µt + 2α)
t

= min
t

(µt + 2αt−1 + µ + 2α).

since the smallest ρk is ρ(1,0) and ρ(0,1) while the next small one being ρ(1,1), in order to let the minimum be attained at ρ(1,0) and ρ(0,1), the
ratio between ρ(1,0) and

√
2µα must be closer to 1 than that between ρ(1,1) and

√
2µα. Hence the result.

AIMS Mathematics Volume 8, Issue 10, 24681–24698.



24687

3.1. Reduction analysis

It’s known that these eigenfunctions are also an orthogonal basis of H. Hence, we have the
decomposition:

Ψ =
∑
K∈N2

xKΨK for all Ψ ∈ H,

let S = {K01,K02} and K01 = { j01, k01},K02 = { j02, k02}, j01 < j02, k01 > k02. Then, the according to
center manifold existence result for parabolic equations, (see for example Chapter 6 of [24]), points on
center manifold can be rewritten as:

Ψ = xΨK01 + yΨK02 + Φ,

in which Φ is the center manifold function from the critical two dimensional eigenspace to its
orthogonal complement.

Then, (2.4) can be written as: (Using the symmetric property of Lλ)

dx
dt

= βK01 x +
1

‖ΨK01‖
2 (G(xΨK01 + yΨK02 + Φ),ΨK01),

dy
dt

= βK02y +
1

‖ΨK02‖
2 (G(xΨK01 + yΨK01 + Φ),ΨK02).

(3.3)

Here, it is evident βK01 = βK02 when λ is near λc.
It is clear that the linear part of (3.3) is diagonal. Hence, by Thm A.1.1 from Appendix of [18],

− LλΦ = PsG2(xΨK01 + yΨK02) + o(x2 + y2) + O(|(βK01 , βK02)|(x2 + y2)), (3.4)

Ps is the corresponding projection and

G2(u) = −λ∇(u∇[−∆ + I]−1u) − 3αu2, (3.5)

we can write G2 as
G2(u, v) = −λ∇(u∇[−∆ + I]−1v) − 3αuv (3.6)

to make it to be an continuous bilinear operator on H1 × H1.
Now, (3.4) can be rearranged as: (note L−1 is invertible in the complement space of the critical

eigenspace)

Φ = − L−1
λ [P2G2(xΨK01 + yΨK02) + o(x2 + y2) + O(|β1|(x2 + y2))]

= − L−1
λ P2[x2G2(ΨK01 ,ΨK01) + y2G2(ΨK02 ,ΨK02)

+ xyG2(ΨK02 ,ΨK01) + xyG2(ΨK01 ,ΨK02) + o(x2 + y2) + O(|β1|(x2 + y2))].
(3.7)

Hence, Φ = O(x2 + y2) (in the H1 norm sense). Which yield:

G(Φ,Φ) = o(|x|3 + |y|3),

in which default o and O means in H sense.
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The general form for G2(Ψ jk,Ψ j′k′) can be calculated:

G2(Ψ jk,Ψ j′k′)

=

[
λπ2

4(1 + ρ j′k′)

(
j′( j′ − j)

L2
1

+
k′(k′ − k)

L2
2

)
−

3
4
α

]
Ψ j− j′,k−k′

+

[
λπ2

4(1 + ρ j′k′)

(
j′( j′ − j)

L2
1

+
k′(k′ + k)

L2
2

)
−

3
4
α

]
Ψ j− j′,k+k′

+

[
λπ2

4(1 + ρ j′k′)

(
j′( j′ + j)

L2
1

+
k′(k′ − k)

L2
2

)
−

3
4
α

]
Ψ j+ j′,k−k′

+

[
λπ2

4(1 + ρ j′k′)

(
j′( j′ + j)

L2
1

+
k′(k′ + k)

L2
2

)
−

3
4
α

]
Ψ j+ j′,k+k′ ,

(3.8)

using easily calculated facts of:

(−∆ + I)−1Φ jk =
1

1 + ρ jk
Φ jk.

By (2.8), we have the following:

G2(Ψ jk,Ψ j′k′)

=
∑{

β j′k′ + µρ j′k′ + 2α
4

[
1 +

π2

ρ j′k′

(
±1

j′ j
L2

1

±2
k′k
L2

2

)]
−

3
4
α

}
Ψ j±1 j′,k±2k′

=
∑{

λρ j′k′

4(1 + ρ j′k′)

[
1 +

π2

ρ j′k′

(
±1

j′ j
L2

1

±2
k′k
L2

2

)]
−

3
4
α

}
Ψ j±1 j′,k±2k′ .

(3.9)

The Eq (3.3) now can be written as:

dx
dt

=β1x + P1G(xΨ1 + yΨ2 − L
−1[x2G2(Ψ1,Ψ1)

+ y2G2(Ψ2,Ψ2) + xyG2(Ψ1,Ψ2) + xyG2(Ψ2,Ψ1)]),
dy
dt

=β2y + P2G(xΨ1 + yΨ2 − L
−1[x2G2(Ψ1,Ψ1)

+ y2G2(Ψ2,Ψ2) + xyG2(Ψ1,Ψ2) + xyG2(Ψ2,Ψ1)]).

(3.10)

Eliminate the zero terms (it is not hard to notice all the quadratic terms vanishes), we have the
following: (where c(n1, n2) = 9/16 if none of n1, n2 is 0, c(n1, n2) = 3/4 if only one of n1, n2 is 0.
d(n1, n2) = 3/4 if none of n1, n2 is 0, d(n1, n2) = 3/2 if only one of n1, n2 is 0.)

dx
dt

=β1x − c(K01)αx3 − d(K01)αxy2

− P1G2[Ψ1,L
−1G2(Ψ1,Ψ1)]x3 − P1G2[Ψ1,L

−1G2(Ψ2,Ψ2)]xy2

− P1G2[Ψ2,L
−1G2(Ψ1,Ψ2)]xy2 − P1G2[Ψ2,L

−1G2(Ψ2,Ψ1)]xy2

− P1G2[L−1G2(Ψ1,Ψ1),Ψ1]x3 − P1G2[L−1G2(Ψ2,Ψ2),Ψ1]xy2

− P1G2[L−1G2(Ψ1,Ψ2),Ψ2]xy2 − P1G2[L−1G2(Ψ2,Ψ1),Ψ2]xy2,

(3.11)
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dy
dt

=β2y − c(K01)αy3 − d(K01)αx2y

− P2G2[Ψ2,L
−1G2(Ψ2,Ψ2)]y3 − P2G2[Ψ2,L

−1G2(Ψ1,Ψ1)]x2y

− P2G2[Ψ1,L
−1G2(Ψ2,Ψ1)]x2y − P2G2[Ψ1,L

−1G2(Ψ1,Ψ2)]x2y

− P2G2[L−1G2(Ψ2,Ψ2),Ψ2]y3 − P2G2[L−1G2(Ψ1,Ψ1),Ψ2]x2y

− P2G2[L−1G2(Ψ2,Ψ1),Ψ1]x2y − P2G2[L−1G2(Ψ1,Ψ2),Ψ1]x2y.

(3.12)

The expression for coefficients differs by cases depending on how many indexes of the critical
eigenvectors are zero. The calculation is tedious but straightforward and here is a example of one of
the coefficients when all j01, k01, j02, k02 are nonzero numbers.

P1G2[Ψ1,L
−1G2(Ψ1,Ψ1)]

=
1
β0

{
λρ j01k01

4(1 + ρ j01k01)

[
1 +

π2

ρ j01k01

(
−

j2
01

L2
1

−
k2

01

L2
2

)]
−

3
4
α

}
× (−3α)

+
2

β0,2k01

{
λρ j01k01

4(1 + ρ j01k01)

[
1 +

π2

ρ j01k01

(
−

j2
01

L2
1

+
k2

01

L2
2

)]
−

3
4
α

}
×

{
λρ0,2k01

4(1 + ρ0,2k01)

(
1 −

π22k2
01

ρ0,2k01 L2
2

)
−

3
4
α

}
+

2
β2 j01,0

{
λρ j01k01

4(1 + ρ j01k01)

[
1 +

π2

ρ j01k01

(
j2
01

L2
1

−
k2

01

L2
2

)]
−

3
4
α

}
×

{
λρ2 j01,0

4(1 + ρ2 j01,0)

(
1 −

π22 j2
01

ρ2 j01,0L2
1

)
−

3
4
α

}
+

1
β2 j01,2k01

{
λρ j01k01

4(1 + ρ j01k01)

[
1 +

π2

ρ j01k01

(
j2
01

L2
1

+
k2

01

L2
2

)]
−

3
4
α

}
×

{
λρ2 j012k01

4(1 + ρ2 j012k01)

[
1 +

π2

ρ2 j01,2k01

(
−

2 j2
01

L2
1

−
2k2

01

L2
2

)]
−

3
4
α

}
,

(3.13)

which can be simplified as

P1G2[Ψ1,L
−1G2(Ψ1,Ψ1)]

= −
9
8
α +

1
β0,2k01

{
λρ j01k01

4(1 + ρ j01k01)

[
1 +

π2

ρ j01k01

(
−

j2
01

L2
1

+
k2

01

L2
2

)]
−

3
4
α

}
×

{
λρ0,2k01

4(1 + ρ0,2k01)
−

3
2
α

}
+

1
β2 j01,0

{
λρ j01k01

4(1 + ρ j01k01)

[
1 +

π2

ρ j01k01

(
j2
01

L2
1

−
k2

01

L2
2

)]
−

3
4
α

}
×

{
λρ2 j01,0

4(1 + ρ2 j01,0)
−

3
2
α

}
+

1
β2 j01,2k01

{
λρ j01k01

2(1 + ρ j01k01)
−

3
4
α

}
×

{
λρ2 j012k01

8(1 + ρ2 j012k01)
−

3
4
α

}
.

(3.14)

We will omit the rest terms since all of these coefficients have similar forms.
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3.2. Dynamic transition

To simiplify notation, we rewrite the above reduced equation as follows:

dx
dt

= β1x + Ax3 + Bxy2 + o(|x|3 + |y|3) + O(|(β1, β2)|(|x|3 + |y|3)),

dy
dt

= β2y + Cy3 + Dyx2 + o(|x|3 + |y|3) + O(|(β1, β2)|(|x|3 + |y|3)).
(3.15)

In the following, we will consider a special symmetric case. We assume L1 = L2, meaning Ω is a
square, and further suppose the critical indexes are ( j01, k01) and (k01, j01) (this is generic when Ω is
a square). Then, we will have β1 = β2, A = C and B = D. We notice the square shape set up will
bring a certain symmetry to our system, which simplify our analysis below. Indeed, in this situation,
symmetry u1(x, y)→ u1(y, x) will bring changes to (3.15) so that x = y and x = −y remain invariant in
our system. Hence, the dynamics are determined by (3.17) below.

We first present some results regarding the homogeneous vector field

F(
(
x
y

)
, β1) =

(
A(β1)x3 + B(β1)xy2

A(β1)y3 + B(β1)yx2

)
, (3.16)

near β1 = 0 in the lemma below. Note, our reduced Eq (3.3) can be written simply as

d
(

x
y

)
dt

= β1

(
x
y

)
+ F(

(
x
y

)
, β1) + o(|x|3 + |y|3) + O(|β1|(|x|3 + |y|3)). (3.17)

Hereafter, we let A = A(0), B = B(0). When the critical index is { j, 0} with j , 0, we have A, B with the
following formula (the formula for general { j, k} involves around 10 to 20 lines of symbolic expression
hence is too complicated to be included in this article.)

A =
376α2L6 + 4α2 j2L4π2 − 23α j2L4µπ2 − 746α j4L2µπ4 − 2 j4L2µ2π4 + 40 j6µ2π6

24αL6 − 48 j4L2µπ4 ,

B =
j4µ4π4(−2L2 + j2π2) − α j2L2µπ2(5L2 + 134 j2π2) + 4α2(34L6 + j2L4π2)

4αL6 − 4 j4L2µπ4 .

(3.18)

Lemma 3.1. Suppose A , ±B, then for β1 sufficiently near 0, we have the following for the vector field
F above:

(1) Point 0 is nondegenerate for F. F has exactly eight straight orbit lines start or end in 0, which are
represented by x = 0, y = 0, y = x and y = −x. Each sectorial domain of vector field F separated
by these orbit lines must be one of the elliptic, hyperbolic and parabolic regions, and remains the
same type for β1 sufficiently near 0. (see [18] or Chapter 2.11 Definition 1 of [25] for region type
definitions.)

(2) For different combinations of signs for A, A + B, we have the following Table 1 for the structure
of vector field F when β1 is near 0.
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Table 1. Structure of vector field F.

No. A A + B index of F sturcture of F

1 + + 1

2 − − 1

3 + − −3

4 − + −3

Proof. Due the homogeneous nature of vector field F, any singular points (x, y) or points on straight
orbit lines must satisfy

F1y − F2x = 0,

which is equivalent to (A − B)xy(x2 − y2) = 0, since A , B, x = 0,y = 0,x = y and x = −y are four
straight orbits for F (F nonzero on these four lines can be derived from A , 0 and A + B , 0) and 0
is consequently nondegenerate for F. Then, the remaining statement part 1 of the lemma follow from
results regarding nonhyperbolic critical points in R2, see Chapter 2.11 of [25]

The second statement can also be derived by methods similar to Chapter 2 of book [18]. To simplify
the issue, notice the obvious symmetry of the vector field F around the origin and along the lines of
x = y and x = −y. Hence, simply determine the type of regions inside two sectors in x > 0,−x < y < x
is sufficient for our purpose. The types are determined by the sign of F2 for the points (x, y) with
F1 = 0. We suppose wlog that x = 1, hence correspondingly −1 < y < 1 and

A + By2 = 0,

then
Ay3 + By = y(Ay2 + B)

= −y(1 − y2)(A − B),
(3.19)

and the structure inside each sector is determined by the sign of A − B. The vector field plot and
index is then straightforward by investigating critical points and orbits at infinity using Poincare
compactification. �

With this lemma in mind, the dynamic transitions for system (3.3), and the original system (2.4),
can be derived in the following theorem, using techniques modified from Section 2.4 of [18].
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Theorem 3.1. Suppose Ω = [0, L] × [0, L] and the PES conditions (2.10) are satisfied for S =

{( j01, k01), (k01, j01)} with j01, k01 being different nonnegative integers and λc defined by (2.9), then we
have the following:

(1) The system (2.4) always undergoes a dynamic transition at (u1, λ) = (0, λc). Namely, the basis
state u = 0 is locally (nonlinearly) asymptotically stable for λ < λc, and is (nonlinearly) unstable
for λ > λc.

(2) For the case 1,3,4 in Lemma 3.1, the transition is a jump type transition. More specifically, for
λ < λc, the steady state 0 of system (2.4) is locally asymptotically stable, and there exists a certain
neighborhood U of O in H, a ε > 0, and a δ > 0, an open and dense set Uλ ⊂ U depending on λ,
such that for any solutions u1(t, φ, λ) of (2.4), with φ ∈ Uλ and λc < λ < λ + ε,

lim sup
t→∞

||u1(t, φ, λ)|| ≥ δ > 0.

For case 3 and 4, four saddles (or metastable states) are bifurcated from the basic state both
when λ > λc and λ < λc. For case 3 and 4 the transition structure is shown in figure below:

Case 3:

λ = λc λ > λcλ < λc

Case 4:

λ = λc λ > λcλ < λc

(3) for the case 2 above, the transition is a continuous type transition. More specifically, for λ <

λc, the steady state 0 of system (2.4) is locally asymptotically stable, and there exists a certain
neighborhood U of O in H, a ε > 0, an open and dense subset Uλ ⊂ U depending on λ, such that
for solutions u1(t, φ, λ) of (2.4) with φ ∈ Uλ and λc < λ < λ + ε, we have

lim
λ→λc

lim sup
t→∞

||u1(t, φ, λ)|| = 0.

In fact, there will be eight steady states bifurcated from the basic state when λ > λc, four saddles
(or metastable states) and four sinks. More specifically, solutions start in U will approach the
following four solutions eventually for λc < λ < λc + ε:

if A > B : ±

√
− 1

Aβ
1/2
1 Ψi + o(|β1|

1/2), i ∈ {1, 2},

if A < B : ±

√
− 1

A+BΨ1 ±

√
− 1

A+BΨ2 + o(|β1|
1/2),

(3.20)

and the transition structure is shown in the figure below:
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Case 2: (If A < B)

λ ≤ λc λ > λc

Case 2: (If A > B)

λ ≤ λc λ > λc

Proof. The first assertion follows from Theorem 5.1.1 & 5.1.3 of Chapter 5 of [24], or Theorem 2.1.3
of [18]. Let the solution of (3.15) be denoted as u(t, u0) where u0 is the initial value in a neighbourhood
of 0 in R2.

Case 1. In this case A > 0, A + B > 0, A , B then at β = 0 there is a neighbourhood U of 0 containing
an open and dense set Ũ, where for any u0 ∈ Ũ, we have

lim sup
t→∞

u(t, u0) , 0,

thus, by the stability of extended orbits (Theorem 2.1.15 of [26]) and the exponential attraction
of system orbits by the center manifold, the transition is of jump type. The dynamics for λ < λc

is obviously mirrored by case 2 which is discussed below.

Case 2. In this case A < 0, A + B < 0. Then 0 is locally asymptotically stable for system (3.17) at
β1 = 0, hence by the S m attractor bifurcation theorem (Theorem 2.2.2 of [18]), the steady state
0 bifurcates to an attractor holomorphic to S 1, and the transition type is continuous. Moreover,
the system (3.17) is equivalent to the dynamical system without higher order terms in a small
neighborhood of the origin. To see this, we first show the eight solutions of the following steady
equation persists under higher order perturbations:

βu + F(u, β) = 0,

where β > 0 small and u =
(

x
y

)
. Now let u = σ

√
β, we investigate the steady problem with the

original equation:
βu + F(u, β) + ∆(u, β) = 0, (3.21)

where ∆(u, β) = o(|u|3) and is of Cn for any n > 0 by the smoothness of the center manifold
function. It now transforms to

σ + F(σ, β) + β−
3
2 ∆(σ

√
β, β) = 0. (3.22)

When β→ 0,

∂

∂σ
[β−

3
2 ∆(σ

√
β, β)] = β−1 ∂

∂(σ
√
β)

[∆(σ
√
β, β)] = O(

√
βσ3)→ 0,
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we then obtain, through the use of implicit function theorem (since we have β−
3
2 ∆(σ

√
β, β) → 0

as β→ 0), eight functions ui(β), i = {1, 2, . . . , 8} for 0 < β ≤ ε, where ε is a fixed number > 0 such
that ui(β) solves (3.21) and β−1/2ui → σi, σi being the ith nonzero solution of σ + F(σ, 0) = 0
hence ui(β)→ 0.

It then remains to show every nonzero solutions that converge to zero must coincide with one of
the eight solution curves ui. Suppose u(β) , 0 and u(β) satisfies Eq (3.21) and u(β) → 0 when
β→ 0 then σ = β−1/2u satisfies (3.22). Hence

β−
3
2 ∆(σ

√
β, β) = o(σ3),

σ + F(σ, β) + o(σ3) = 0 then shows σ is bounded as β → 0, which indicates σ + F(σ, 0) → 0,
hence σ must approach one of σi (excluding the origin), by uniqueness derived from the implicit
function theory, we obtain the persistence of eight steady states of (3.17) under higher order
perturbations. The local linear structure of these eight steady states can also be determined by
transform (3.17) to

dσ
βdt

= σ + F(σ, β) + β−
3
2 ∆(σ

√
β, β),

thus, we have four saddles and four sinks, and the sign of B − A determines which is which.
Periodic orbits clearly is impossible in this case, hence the bifurcation structure is justified using
the Poincare-Bendixson theory in R2 and Lemma 3.1. The transition is continuous.

Case 3,4. The argument for case 3 and 4 are similar. The proof will be a modification of section 2.4.3
of [18]. First, we notice there are four persistent steady states (all are saddles) bifurcated from
basic states, the proof is similar to above and is a result of Lemma 3.1. Then, we can infer
that apart from the stable manifold of the four orbits, all points will approach a singularity in
infinity (using Poincare compactification, and assume higher order perturbation is only local,
which clearly does not interfere with our analysis, then the singularities at infinity, four sinks and
four sources are stable to perturbations). Then, the phase picture is justified.

Remark 3.1. We note that the persistence of the steady states argument above could be carried over
with no issue when the domain is a rectangle, and double eigenvalue crossings take place when λ

crosses λc (of course we still need 0 to be a nondegenerate singular point when λ = λc). However,
in those cases, the transition structure can lose some of the symmetries outlined in above figures, and
elliptic regions (which are filled with homoclinic orbits) might appear, and the transition types are then
ambiguous.

Remark 3.2. For the full rich stimulant system (2.2), the eigenvalue analysis has been done in [18].
It is shown that the crossing eigenvalues are real and the nonlinear interaction brought about by
the center manifold is similar (though more involved) to the above analysis. Moreover the reduced
equation still has the form (3.15) while considering double eigenvalue crossing case. Though for the
full system (2.1) the transition may include spatial-temporal oscillation, as has already been pointed
out in [18].
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Remark 3.3. It is worth noting here that the Theorem 3.1 can be used on more general domains with
double eigenvalue crossings. Disk domains, for example have reduced equations of the same form as
in Theorem 3.1 (and this is generic, since the only general single crossings are caused by constant
states, which are clearly stable in our model) . This can be seen using similar methods dealing with
Bessel functions as in [22].

4. Conclusions

In this article, we focus on the dynamic transition of chemotactic systems with double eigenvalue
crossings. After performing necessary eigenvalue analysis, we obtain the principles of exchange of
stabilities. Thus the system is shown to always exhibit dynamic transition when parameter λ increases
across a critical threshold. Then, a reduction analysis based on center manifold of the system is done
and the bifurcation number A and B is given. It is then shown in Theorem 3.1 that the system (2.4) can
undergo both jump and continuous types of transitions depending on the signs of A and B. Detailed
transition structures are demonstrated.

We note that our analysis leading to Theorem 3.1 can be extended to generic third order systems
generated from evolution equations, which constitutes a complement of the second order system
treated in Section 2.4 of [18]. Third order systems are quite prevalent in reduced parabolic systems,
see [22, 27].

We include several numeric results. In the transition type graph Figure 2, it is clear that all four
cases in Lemma 3.1 can occur hence both continuous and jump type transitions are realizable. Note,
this implies different jump type transitions (those with metastable states as in case 3 and 4, and those
without) can happen.

In Figure 3, we show typical approximate bifurcated states when continuous transition occurs, and
the four states in the graph correspond to the four stable bifurcated steady states in orbit plot for case 2
(A < B) in Theorem 3.1.

From these results, it is clear the theoretical analysis from the Section 3 is well supported by numeric
evidence. Moreover, we list several findings from numerical study which might involve deeper analysis
we are yet to explore.

(1) In the transition type graph, it is clear that when µ, or the relative diffusion rate of the biological
species u is large enough, the system will always undergoes a continuous transition. This is
probably linked to the stabilizing effect brought about by the enhanced mobility of the species.

(2) It is also evident from graph that when L, α is large and µ is small, the transition types become
increasingly unstable with regard to parameter changes. In those parameter regions, the actual
transition will resemble transition with multiple (> 2) eigenvalue crossings.
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L

µ

(a) α = 0.5

L

µ

(b) α = 1

L

µ

(c) α = 5

L

µ

(d) α = 20

Figure 2. transition type graph for 0 ≤ L ≤ 10 and 0 ≤ µ ≤ 10 for different values of
α. Different colors indicate different transition types. Grey indicates case 1 and is of jump
type, dark orange indicates case 2 and is of continuous transition, light orange and yellow
corresponds to case 3 and 4, which are of jump transition with metastable states. Blank areas
indicate single value crossings.

x1

x 2

x1

x 2

x1

x 2

x1

x 2

Figure 3. Four approximated steady states bifurcated from basic states for system (2.4) when
L = 9, α = 20, µ = 7, and λ crosses critical λc = 80.4726. The darker area indicates low
density, lighter indicates high density.
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