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1. Introduction

In general, microscopic particles spread out in a random manner. This occurs in a large number of
phenomena in engineering, biology, ecology and medicine (see (4,5, 7, 14,19,22,23,26,31, 34, 36]).
They have been studied by many researchers. Several formulations of diffusion exist in the market,
and there are several types of treatments as well. Anomalous diffusion (unlike the classical one) cannot
be elucidated by the standard ways, as the corresponding mean square displacement does not adhere
to the linear growth law assumed in the classical problems. It is found that fractional derivatives are
better suited for these disordered phenomena. They outperform by far the nonlinear models which
suffer from high complexity and high computational cost.

In this paper, we are interested in structures described by Timoshenko models. This type of model,
in the integer-order case (second order time derivative), has been investigated by a fairly large number
of researchers, and several results have appeared in the literature. The basic model is described as
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follows:
P19y —k(p, +¥), =0, 0<x <1, t>0,
oy — b+ k(o +)=0,0<x<1, >0,

where ¢ stands for the transverse movement and i stands for the angle of rotation of the beam. The
constant p; stands for the mass density, p, represents the moment of mass inertia, & is the shear modulus
of elasticity and b is the rigidity coefficient of the cross-section.

The system is conservative. Several kinds of damping devices have been utilized to stabilize these
structures. First, two frictional dampings (based on velocity feedback) have been added, one in each
equation [32]:

pzwtt_b‘/’xx+k(¢x+‘//)+¢’t:0, O<x<17 t>0'

This is the most favorable situation after the case of structural dampings (based on the Laplacian of
the velocity feedback). Of course, these are stronger than the mere frictional dampings. Quickly, it
has been realized that only one damping process (in either the first or second equation) is enough to
stabilize the system in an exponential manner. Undoubtedly, from the application point of view, this
is more convenient because it is less costly and easier to implement. However, from the point of view
mathematics, the problem becomes more challenging. Indeed, in this case we lost one nice term, which
is responsible for the dissipation of that component. That is to say, one needs to show that only one
damping in one component may not only force that component to go to zero exponentially, but also
the other (undamped) one (in the energy norm). Researchers will then need to come up with new
arguments to overcome this loss. For instance, the frictional damping term ¢, has been dropped and
the problem given by

{Pl%—k(sox+w)x+go,:0, O<x<l1, t>0,

P1¢y — k(o +¢), =0, 0<x <1, t>0,
P —bY + k(o + )+, =0, 0<x<1,1>0

is discussed in [25]. A much weaker damping namely, a viscoelastic damping in the rotational direction
was considered first in [3]:

plﬁott_k(90x+w)x+‘pt:0, O<x< 1’ t>07
P2 — b + [ (t = W (S)ds + k(g +4) =0, 0<x < 1, 1> 0.

The authors proved that the system is exponentially (polynomially) stable depending on whether the
involved relaxation function w is exponentially (polynomially) decaying to zero. Subsequently, many
extensions, improvements and generalizations, in several directions, have appeared in the literature (for
example, [10, 15,20,21, 24, 35,37-39] and the references therein). In particular, boundary dampings,
nonlinear dampings and coupling with thermal equations have been considered. Moreover, the class of
admissible relaxation functions has been extensively enlarged.

As mentioned above, when the structure operates in a complex medium, integer-order derivatives
are no longer appropriate to describe the phenomena. The mean square displacement is not linear. It
is nonlinear and proportional to ¢’ to some power v > (. The system is then classified according to
the ranges or values of y whether they are equal to 0, between 0 and 1, between 1 and 2, equal to 2,
above 2, etc. The combination of the balance law and the constitutive relationship between the stress
and the strain will then involve a nonlocal term in time containing a singular kernel. This suggests
fractional calculus as an adequate platform to study such phenomena.
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We shall consider a viscoelastic damping which may be embodied in the material of the structure or
added as a controller. It will act in the rotational direction to slow down the vibrations or absorb shocks
that can reduce the lifetime of the structure, damage it or completely destroy it. Similar dampers are
called “rotary” dampers in the market. We will address the fractional problem:

01 CDPo — k(o +), =0,0<x<1,t>0, 1 <f<2, (LD
P2 CDB'»” - wax + Ltw(t_ s)lr//xx(s)ds + k(ng + lr//) = O, 0<x< 1, > 0’ '
with the following Dirichlet boundary conditions and initial values:
{<p(0,t):so(l,t):w(O,t):w(l,t):O, 120, (12)
‘P(-, O) = ‘)00’ wt(»o) = ‘;Dl’ l//(,()) = 17009 lpt(" O) = wl’ '

where €D? denotes the Caputo fractional derivative operator (defined below). To the best of our
knowledge, the present analysis of this problem, has not been discussed so far.
Let U = (o, 1,//)T and Uy = (¢o, zﬁo)T ; our system may be recast into the form

‘DU = MU- f N(t — )U(s)ds,
0

where

M:( K2lp1  kdudpn )
—kOy/p2 bIifpr —kly/p2 |

and

0 0
N = ( 0 wnd/p: )

We consider the space
H = Hy(0,1) x Hy(0, 1),

and the domain
DM) = {U =(g.y)" € H : g,y € H*(0,1) N Hy(0, 1)}

In [9], the authors proved the existence and uniqueness for a similar abstract problem. We report
here briefly this result. Let (X, ||.|[) be a Banach space and P, (5(t)),s( be closed linear operators defined
on the domains D(#) and D(S(7)) 2 D(P) dense in X, respectively. We denote by ||.||; the graph norm
in D(P), R(v,P) := (vI — P)~! and p(P) is the resolvent of P. The problem

‘DPw = Pw — f St — s)w(s)ds, 1 <p <2,
0

with the initial data w(0) = wy and w’(0) = 0 in D(%) (see also [1,30]) admits the classical solution
w € C((0,00); D(P)) N C'((0, ©0); X)

such that r(’;—:ﬁﬂ) % (W —wp) € C*((0, 0); X), provided that the following conditions hold:

(A1) For some 0 < 8y < n/2 and every 6 < 6, there is a constant U > 0 such that

2opw ={veC:v#0,

arg(v)| < fw} € p(P),
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and [ROv, Pl < U/ VI, v € o, With w = 0 + /2.

(A2) For each w € D(P), S(.)w is strongly measurable on (0, co). There exists a locally integrable
function f(r) with Laplace transform f(v), Re(v) > 0 and ||S(Ow|| < f@®)|wllg, t > 0, w € D(P).
In addition, $* : Zy,» — L(D(P);X) has an analytic extension S to 20w, verifying the relations
||S(v)w|| < ||S(v)|| IWllg , w € D(P) and ||J§(v)|| = 0(|17|) as |v| — oo.

(A3) There exists a subspace F that is dense in (D(P),||.|lg) and C > 0 such that P(F) € D(P),
S'WV)(F) € D(P), |[PS* (w| < Clwll, w € F and v € X,

Assuming that U, € D(M), it follows from the above result that we have a classical solution in

U e C(R*,D(M)) N CY (R, H)

118

such that =575 * (9 = ¢0), 7575 * (W — o) € CX((0, 00); L0, 1)).
In fractional calculus, it is known that € D (CD“go(t, x)) #¢ D**¢(t, x). Consequently, rewriting our

system using €D (CD“go) and €D (CD‘H//) will result in additional terms. Actually, the relationship
between both forms is given by

¢ (0, x)r 2

‘D" (“Dg(t, %)) = Dg(t, x) + Ta—79)

We shall consider, rather the simplified system given by

{pl D (D) ~ kg + ). =0, 12 <a <1, (1.3)

p2 ED" (CD™) = b + [ (1 = sWia(s)ds + k(s +9) = 0

for 0 < x < 1, t > 0 with the initial and boundary conditions (1.2). Clearly, the two fractional
derivatives coincide when ¢’(0, x) = 0. The existence and uniqueness are then guaranteed by [9] (see
also Section 3 below). Regarding the stability, it will not be affected, as 1 — 2a < 0.

For this problem (1.2) and (1.3), we shall first finalize the discussion on the existence and uniqueness
of a solution by using the notion of resolvents (instead of semi-groups). Then, we will highlight the
difficulty of treating the stability for this problem. The utilization of a fractional chain rule version
gives rise to a problematic term in the fractional derivative of the “energy” functional. Even though we
found a way to control it, a smallness condition on the involved kernel is still imposed. We obtain a
Mittag-Leffler- type stability provided that the kernel itself decays somehow in a similar manner.

Various other fractional systems modeling Timoshenko beams have been derived under different
conditions and in different circumstances. The governing equations often involve either Caputo
or Riemann-Liouville fractional derivatives. They have been tackled mostly from the engineering
(response determination, resonance, free vibrations, influences on mechanical responses, parametric
analyses, steady-state response, transient response, etc.) or numerical analysis perspective. A number
of analytical and semi-analytical approaches have been employed (see [6,27,28] and the references
therein). This involves, for instance, Galerkin schemes, central difference schemes, direct numerical
integration schemes, averaging methods and various kinds of approximations of fractional derivatives.
The utilized methods were compared to the traditional ones (extended actually to the fractional case),
such as the Laplace transform, Fourier integral transform and Mellin transform, which have been very
instrumental. Error estimates and numerical experiments have been conducted to justify the usefulness,
effectiveness and accuracy of fractional models in describing the dynamics of beams. On the other
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hand, integer-order (with second-order time-derivatives of the states as leading terms) Timoshenko
models with fractional damping have also been investigated in many research papers (see [16, 18] and
the references therein). The fractional damping may be weak (described by a fractional derivative of
the state) or strong (described by a fractional derivative of the Laplacian of the state). In the latter case,
it may be looked at as a viscoelastic damping process with a singular kernel. More precisely, it takes
the form of the convolution of a singular kernel (power type) with the time-derivative of the Laplacian
of the state.

In the next section, we prepare some preliminaries. Section 3 contains the existence and uniqueness
results. It is followed by a section in which we prove two useful identities and define our “energy”
functional. Section 5 is devoted to the introduction of several functionals. In Section 6, we treat the
stability issue. Section 6 is concerned with some numerical simulations. A conclusion is provided in
the last section.

2. Definitions and propositions

In this section, we present the definition of the Riemann-Liouville fractional derivative, the Caputo
fractional derivative and the Mittag-Lefller functions (see also [13, 17,29, 33] for more on fractional
calculus). Some useful formulas are also given.

Definition 1. The Riemann-Liouville fractional integral of order y > 0 is given by

Hnn—r(kfa—wwaMsy>o

for any measurable function y provided that the right-hand side exists. Here, I'(y) is the usual gamma
function.

Definition 2. The fractional derivative of order 7y in the sense of Caputo is given by

1 !
CD'x(t) = F(n—y) f (t =57 "(s)ds, n—1 <y <n,
- 0

whereas the fractional derivative of order vy in the sense of Riemann-Liouville is defined by

RL 1
D’ t—— t—8)"7"" x(s)ds, n—1<y<n,
Xx(1) T = )dtnf( )7 x(s) Y
provided that the right-hand sides exist.

The passage to and from the Riemann-Liouville fractional derivative and the Caputo fractional
derivative is given by

x(0)™

RLDy —
Xx(1) Td—7)

+SD'x(1), 0<y <1, t>0.

We recall the definitions of the one-parametric and two-parametric Mittag-Leffler functions,

respectively:
n

. o <
@ = Fram a1y RE@ >0,
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and
n

o e
Eop(2) = Z o Tanih’ Re(@) > 0, Re(B) > 0.
Clearly, E,,1(z) = Eo(2).
Proposition 1. [40] If x(¢) is a differentiable function satisfying
“D%(1) < —yx(®), 0 <a <1

for some y > 0, then x(t) < y(0)E,(—yt*), t > 0. When the derivative is of the Riemann-Liouville type,
we obtain t* ' E,, ,(—yt®) rather than E,(—yt®).

Proposition 2. [13] For a,B > 0, the identity

1
AMYE, i5( 1Y) = E 5(A1%Y) — ——
aspA") = EagA") = pops

holds.

Proposition 3. [13, p. 61] For u, a,8 > 0, we have the relation

1 t
) f (t — sV Egp(As")s" ds = P E, o p(A1Y), > 0.
0

Proposition 4. [29, p. 99] If I'7x(¢) € C'([0,)), 0 <y < 1 and f(¢) is a continuous function, then
it holds that

RLpy f Y(t—9)f(s)ds = f £t = DYy (s)ds + £(t) fim I'"y(0), t> 0.
0 0 t—0+

We shall utilize repeatedly the following fractional product rule.

Proposition 5. [2] Let f(t) and g(t) be absolutely continuous functions on [0,T], T > 0. Then, for
tel0,T]and 0 < a < 1, we have

a @ @ '3 & ¢'(s)ds
FOCD(0) + gD £(1) =€ D(f3(0) + iy o s Jy T [ £,

Taking f(t) = g(t) will result in the well-known inequality (instead of the ordinary chain rule)

D (1) < 2f(OD° f(1).

The vector version also holds.
3. Existence and uniqueness

Here, we delineate the assumptions on the initial data and the kernel. Moreover, the existence and
uniqueness issue is finalized. We shall assume that our initial data satisfy U, € D(M) (this is defined
below and involves the knowledge of fractional derivatives of the states at zero). The kernel w is

assumed to satisfy the following condition:
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(A) The kernel w : (0,00) — (0,00) is a nonnegative continuous function satisfying I'®w(f) €
C'([0, ),
RLD*w(t) < —CLw(1), t > 0,

and .
W= f w(s)ds < b
0
for some positive constant C,,.

Proposition 6. Assuming (A), we have
w(t) < D1 Eqo(~Cyt™), 1 2 0,

w(t) is summable and

! !
f w(s)ds < (I)f s“_lEm(—Cws“)ds = W1"Eq411(—Cut") < ®/Cy,, t>0
0 0

for some & > 0.

Proof. The proofs follow by a direct application of Propositions 1-3.

Our problem (1.2) and (1.3) may be rewritten as a system of fractional order @, 1/2 < @ < 1. As a
matter of fact, letting U = (cp, @, ;Z)T , @ =C D%,y =€ D% and U, = ((,00, G0, Yo, :,Zo)T , it is evident
that

!
‘DU = MU- f N(t — $)U(s)ds, (3.1
0
where
0 I 0 0
v=| kipr 0 kox/pi 0
B 0 0 0 L
—kdy/p2 O bOr/pr—kls/pr O
and
00 0 0
00 0 0
NO=tog 0o 0o o
00 w(t)@%/pg 0
We set
H = H,(0,1) x L*0, 1) x Hy(0,1) x L*(0, 1),
and

D(M) = {fu =(¢.5.v. J/)T € H : g,y € H(0,1) N Hy(0,1), 3,4 € Hy(0, 1)}.

Assuming that U, € D(M), it follows from the theorem in [30] that we have the classical solution
U e C(R*,DIM)) N CY(R*, H)

satisfying £ % ¢, € C1((0, 00), LX(0, 1)) and =  y, € C'((0, 00), LX(0, 1)).
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It is proved in [8] that the abstract problem given by

{ DU, x) = PUx) + [ St = HU(s, x)ds + f(t, U@D), 0<y <1, 32)

U@, x) = Uy(x) € X,

possesses a unique solution under the above assumptions (A2), (A3) and
(A1)’ For some /2 < ¢ < «, there exists a constant C = C(¢) > 0 such that

Y00 ={reC: |arg(v)| < ¢} C p(P),

and [|R(»v, Pl < C/ V], v € Zo 4.
The function f : (0, 00) X X — X was assumed to be continuous and locally Lipschitz in the second
variable uniformly, with respect to the first variable.

The following resolvent operator notion was employed.

Definition 3. The family of bounded linear operators (Ry(t))t>0 determines a y-resolvent for (3.2) if
the following is true

(a) The mapping R, () : [0, 00) — L(X) := L(X; X) is strongly continuous and R,(0) = I.

(b)Yw € D(P), R,()w € C ([0, 00); D(P)) N C” ((0, 00); X) (C? ((0, 00); X) is the space of continuous
functions w for which € DYw exists and is continuous), and

CDYR,(Hw = PR,(Ow + [} S(t — $)R,(s)wds = R, (YPw + [} R,(t — )S(s)wds, 1 > 0.

It is shown that the family

1 -1 y L\l
R, (1) ::2—m_£ %e’(%’I—P—S(%)) dx, t>0

is a y-resolvent for (3.2). Here, I' := {te” : t > rj U {re® : -0 < ¢ < 6} U {te™™ : t > r} is oriented
counterclockwise, where /2 < 8 < ¢ and r > ry (a positive number determined in the proofs). O

Theorem 1. For Uy € D(M) and f(t, U(t)) = 0, the function
U(1) := R,()Uy € C ([0, 00); D(M)) N C” ((0, 0); X)
is a solution of (3.2).

Bearing in mind that, in our case, the Laplacian is the infinitesimal generator of an analytic
semigroup, the conditions (A1), (A2) and (A3) are fulfilled. We deduce the existence of a unique
(strong) solution in the space

H := {u € C ([0, ), D(A)) N C" ([0, 00), HY(Q)) : 172" 5 (u = ug) € C* ([0, 00), LAQ))}.

where
D(A) := H*(Q) N Hy(Q).
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4. Two useful identities
Before tackling the stability issue, we need to prove two identities, define the “energy” functional

and compute its fractional derivative. The superscript C in “D? will be dropped for notation
convenience. Moreover, we will denote

R o ’X'(U)dﬂ)z
0= i ), (t—f)““( o —ny) =0

1 t
(wOy)(?) = f f w(t =) x(?) —)((s)|2 dsdx, t >0,
0o Jo

and ||.|| the L?>-norm.
The analysis below is valid on arbitrary intervals [0,7], T > 0. Since the evaluations are
independent of time, they will be valid on all [0, +c0).

Proposition 7. Assume that I'w(t) € C'([0,0)),0 < a < 1 and y € Hé(O, 1) is a differentiable
function. Then, it holds that

I D [ wlt = sis)dsdx = LEED wm )@ + 4 (i wlt - s)ds) D ||yl

@ tdg (€ wmdy (€ [aOP]ds | e
_ZF(l a,) 0 (— f)l’” o - Jo (t—95)® - D (Q)DXX)(I)+ [‘(1 @)

fo fo = é:)l 7 f: (X{,)_’%ld" ( f(f(t -5 ( fos w(s — T))(x(T)dT) ds) dx, t> 0.

Proof. Using Proposition 5 and the identity

b = 9 = (o) dsd
= Il fot w(t — s)ds + fot w(t = 9) (I ds =2 [ x. fo’ Wt = $)y(s)dsdx, t >0,

we find that

D*(wiy)(1) = (D“ Iy @t = ds) Il + ([ wt = 9)ds) D* Il = 55 [ gy
¢ w xS o] 1 o4
Xfo (t(_nr)];ig fo [Iw(i >s||)0 + D fot w(t — ) |D(x(s)||2 ds —1 2f0 D xg[;u()t —],j))(x(s)dsdx
p ! a 1 ()
—2[0 XXD Jy @ = spe)dsdx + 72 [0 g b Sy
¢ o] dn ( fo‘f(t -5 ( fos w(s — T))(X(T)df)l ds) dx, t > 0.

F(l Oz) 0 »[) (1= f)l *Jo (-

By virtue of Proposition 4 and the summability of w, we see that

! !
D f w(t — s)ds = f REDY ot — s)ds + 11%1 I'?w(r), t >0,
0 0 1—0*

D" f;wa ) ()l ds
= KD [t = 5) I ds = s ([ @t = 9 eI ds)|
= Jy ®D" w(t = ) Ila(9)IF ds + DI lim,—o- I'"w(?), 1> 0,
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and

oD [} e = hea(s)dsdx
= i xe fy D e = s)x(s)dsdix + (O Tim, o ' (o), 1> 0.

Therefore,
D“(wuxxxr) bl 5 ¥D w(t = s)ds + (f; w(t = $)ds) D* P

¢ w(nd [l ()] ds o
“ri s [yt e Mol o ) ’jLD w(t = 8) Il ()l ds
—Zfo D xfo a)(t — S)y(s)dsdx — Zfo Xxfo RLDY oy(t — $)x«(s)dsdx

¢ ) Ondn [ (€ —a([* ’
e o fo el (fo (t= 57 (fy (s = Dx0)dr) ds) dx.

Having in mind that

(*ED" Wiy )(®) = Wl [y *-D” (i = s)ds
+ [EED" w(t = ) (P ds =2 [y [ RED” w(t — s)x(s)dsdx, 12 0,

we infer that

D*(wOy (1) = ("D wiy (1) + ( fo’ w(s)ds) D |y

@ t o dg & wipdy (€ [exIP] ds o
_r(l —a) Jo (t f)l a 0 (t_nn)g (l‘ $)@ Zj(; D XJ(; (,L)(t S)XX(S)de.x (41)
d (m’( )d
i o fo o= b S (fo (t= 7 (fy wls _T)Xx(T)dT) ds) dx
for ¢ > 0. This finishes the proof. O

Proposition 8. For absolutely continuous functions y and w such that I'*w, 0 < a < 1 is absolutely
continuous, we have

D* [ w(t - ) [x(1) —x(s)] ds = [ *-D*w(t - 5) (¢(t) - x(5)) ds
p t ¢ w & Y/ (s)ds
+ (fy w(s)ds) Do) = i Jy s ) (). o> 0.

Proof. Clearly, from Propositions 4 and 5, we can write

D [ w(t = ) [x(1) = x(s)| ds = D* (x(@) [} w(t = s)ds) = D* [ w(t - s)y(s)ds
= ([} w(s)ds) Dox(r) + X(r) iy BED%w(t = s)ds + ' w(0)]
w ¢ ' (s)ds
) fo = )‘ K fo ([(_n,)];lg)( 0 )Et(—s))d”)

~ [ RDr i - s)x(s)ds = x(OI'w(0), 12 0.

The conclusion follows.
The following energy functional is dictated by Proposition 7:

+ %(a)l:lt//x)(t), t>0.

1 !
E®=71m ID*@l” + pa [ID*WII” + ( f w(S)dS) WP + klles + vl
0
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Employing (4.1), we have the following along the solutions of (1.3) and (1.2)

DE(D) = py [} D*eD" (D@)dx = Tpry(t) + > fo‘ DYDF D)5~ Toxal)
L (D fotw(s)ds)lllﬂx||2+ (b-f w(s)ds)mnwxn o [ g N g AR
+ [ (e + ) D" (ww) dx = KT oy (D) + SCED 0D )(0) + 3 ([} w(t = 5)ds) D Iyl
o s [ wan ¢ ‘””;‘fz(j)l “ax - [ Doy [ ot - W(s)dsdx
+fie fo Ot (,_folfa ( Of [w(t(n;)ndn)( fo (t—9) ( N T)t//x(T)dr) ds) dx.

On the other hand, from the equations of the system (1.3), we have

1 p1 Jy D*eD" (Dg)dx + o [ DD (D) dx
= —k [y (pu + WD (@, + Y)dx = b [ D"Wdx + [[ DY [ w(t = ) (s)dsdx.

Therefore,

DE(t) = =1 (D" [} w(s)ds) WP + (*EDwoy,)(0)
_TDU‘(/J(I) — TD"‘(//(I) — le//x(t) - k(]~th+lﬁ(t) (42)

v o Iy e (6 ) (e = o7 (U wts = o) ds)dx, 1> 0.

As the last term in (4.2) may be estimated by

fO fo = )1 7 ( 05 [w(x,(",;)adn) fo (t—s) ( o (s - T)Ll/x(r)dr)/ dsdx
< Mg, o+ 1 [ ks ( =97 ([ (s - twodr) ds) dx,

it is clear that, for r > 0O,
DE(r) < —m g all” = S2 (@) (@) — Tpeg(t) — Tpey(t) — thﬁxﬁé/(t) — 27,0
MUML(HmW%LU—w (' s = D(rdr) ds) .

where we have used the Assumption (A). This is a delicate situation because we do not know the sign
of the right-hand side of (4.3). Actually, even if we know that the sign is negative, we cannot deduce
dissipativity. O

4.3)

S. Several lemmas
Several functionals, with which we will modify our energy functional, will be introduced in this
section, and their fractional derivatives will be evaluated.

Lemma 1. The a-fractional derivative of the functional

2
U](t) =

f ot - W(s)ds|| + f ot - ) WP ds, 130
0 0
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satisfies

~ old _ @12 -
DU (1) < =% [ w(t — 9) [Wu(9IP ds + 2Z(RED 0| Dyr)(1) + (UL 4 &) [y |

a 1t

)2
o Jo Jo G- g)ln(fo (t=m= (fonw(U—T)l//x(T)dT) dn) dx, t > 0.

Proof. Proposition 5 allows us to write
DU (1) =2 fol (fot w(t — s)wx(s)ds) D* (ft w(t — s):,bx(s)ds) dx
2
s ) ( = ([ o - Dndr) dn) dx + D [ w(t — 5) |W(S)I ds

for t+ > 0, and the relationship between the Riemann-Liouville fractional derivative and the Caputo
fractional derivative gives

D” ( f w(t — s)l//x(s)ds) =RL p* ( f w(t — s)tﬁx(s)ds) dx — r ( f w(t — s)wx(s)ds)
0 0 r'ad-ao \Jo

Moreover, the summability of w and Proposition 4 lead to
DUW=2[ (5w - s)lﬁx(s)ds) | [} FeD (e = $)r(s)ds + gr(0) limygr I'Co(r) | dx

, 2
—ris I i (= e (f wts = owa(odr) dn) dx
+ [ FED w(t = 9) (I ds + W) limo I'w(2),

and by the definition of the Riemann-Liouville fractional derivative, it follows that

t=0

DU < 2 [ [ | FD 0t - ) [wals) — 0] ds + YOI w(0)]| dx
, 2
S [t =) WP ds - i [ ) o w( F@ = (! i - Dwn(n)dr) dn) dx D
—Cy 5 (t = 9) (I ds + [l limo I' (1), 1 2 0.

From Proposition 3, we have

I'"w(r) < f (t = )" EQo(—Co(t — )%)s™%ds = DE,(-Cyt*) < @, (5.2)
0

o
I'il-a

and using
YA(s) < 2[Yul(s) = Y] + 207(0),
the relation (5.1) leads to

DU 1) < 52 [ oot = ) [ (I ds + (FALLLECOL +w)||¢x||

+2(h |RLD"w(f |ds) [ i D%t = 9)| [W(s) = v dsdx
, 2

g fo 0 - 5)1 (fo (t=m ( fon w(U—T)%(T)dT) dn) dx, t > 0.

The announced estimation is obtained by noticing that
!
0< f *EDw(s)|ds = I'"w(0) = I'" () < @. (5.3)
0
The proof is complete. O
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Our second functional is given in the next lemma.

Lemma 2. For the functional

1
U0 = - [ oD+ pruD ), 150,
0
and &, > 0, it holds that

DUs(®) < =pi ID@IF = p2 D" + K llgx + Y1 + (52 + b = ] w(s)ds) Il
+ 2 (@A) + 201T s () + (201 + 2) Ty (8) + 1 T g () + P2 T g (1), 12 0,

Proof. Applying the operator D“ to the functional U,(t), we obtain

@ 03 a 1 & o ¢ | D%(s "ds
D Us(t) = —py 1Dl + =22 [* [ "f( “’”‘f")( L) )dx+k||<,ox+t//||2

I(-a) Jo Jo -9 \Jo -n J\Jo — G-9*

2 1D + (b~ [ w(s)ds) Il + [ v fo’ w(t = 5) [a(0) = ()] dsdx

¢y [0t
ap ¥ (mdn
ram£<ﬂwwwo<mwﬂk Oﬂ”) , 120,

Next, the estimations

1 t _
f v, f Wt = ) [a0) — ()] dsdx < 65 Wl + 2 (@B (D), 62 > 0,
0 0 46,

@ e € @' (mdn f’ [D¢(s)] ds
F(l — a/) L L (t — é:)l—(y ( 0 (t _ n)a)( 0 w)dx < 7.:/;(1‘) + TDa‘p(l‘),

a L de ¥ (ndn f [DYy(s)] ds
s ) | aem ) S EER e s o s o

imply that

and

DU 1) < =pr ID°GIF = p2 ID"WIF + Kl + I + (b= [ eo(s)ds) Il
+62 [0l + 2 (@O )(0) + p1 | To(t) + Toeg(®] + 2 | Tu®) + Tieu®)] 12 0.

Finally, by virtue of the relation
To@) ST (1) < 2T 4 1y (t) + 2T, (1),

we get

D Ux(0) < =py ID°@P = p2 ID™WAP + kllgs + P + (62 + b = [ w(s)ds) P
+25, @OW)(®) + 201 T 1y (1) + (2p1 + p2) Ty (1) + p1T peg(1) + p2T ey (1), 2 0.

Qur third functional is defined below.

(5.4)
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Lemma 3. If
1 t
Us(0) = —sz D“lﬁf w(t — ) Y1) — Y(s))dsdx, t > 0,
0 0
then, fort >ty > 0,

DU5(1) < p2 (62 + iy = wo) IDWIP + 662 Wl + k2 llgs + wi”

+@ (1 + £2) (way,) (1) — L2REDwop,) (1) + 2EEEDT (1) + PZTM(I)

1t

bt 1t (e () wtn = ) @ () ds) dn)

where wqy = foto w(s)ds and 6; > 0,i=1,2,3.
Proof. Differentiating U;(¢) and using Problem (1.2) and (1.3), we find that

DU = —ps |} Doy Jwlt = ) @) — w(s) dsdx = b [ Y, [} w(t = 5) (1) = y(s)) dsdx
+ I (f @ = sW(s)ds) [ w(t = 5) (p(t) = y(s)) dsdx
h [+ 0) [ w(t — ) (1) — y(s)) dsdx |
ez b i (= (] ot = 9 o) = wtsn ds) dn) ([ 22 .

Next, we integrate by parts and use Proposition 8 to get

DUs(0) = ~p2 fo‘ Dw Jy BED (e = ) (D) = y(s)) dsdx = pa ( [y w(s)ds) ID"yI
) s 2
2 o D ) i () () [ (f ot = ) @) = w9 ds)
+(b= [ w(s)ds) [ i i wlt = 5) Walt) = Ya(s)) dsdlx (5.5)
k[ (@ + ) [ @t = 5) @) — (5)) dsdx
Fr2 i (= e () o = 9 @ - (s ds) d) ([ 52 .

By assumption (A), relation (5.3) and the Young inequality, we infer that

Iy Dow [} ®eDr (e = ) [w(o) - (s)] dsdx < 8 IDYIP + & (*-Dw| oy ) (0)

< S IDYIP - Z (LD Ty, )(1), 5 > 0 (5.6)
1 1 _
f v, f W(t = 5) W) — Ya(5)) dsdx < 8 [l + ——(wnw,)(1), & > 0, (5.7)
0 0 46,
1 t 2
fo [ fo W(t = $) Walt) — Ya(5)) ds] dx < &(way,) (D), (5.8)

1 t —
f (ox +¥) f w(t — $) (W) — Y(s)) dsdx < & ||, + yl* + %(wﬂwx)(t), 6, >0, (5.9)
0 0

$ w(n)dn &y (s)ds
D~
F(l @) fo l/’fo (- g)l @ ( 0 (-n)® 0 (-5 dx

2
@) o ¢ w(ndn $ Y/ (s)ds
< S DI + gt | e () ()| e
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for §; > 0, and

2
w(p)dn &y (s)ds
2F(1 2 J(; I:j(') (t—c‘f)l @ ( 0 (r-n)* )( 0 (t—s)? )] dx
f f £ o' (1 _de (¢ vwas )’ d
<samdo | o (r—f)‘ «\Jo @) Jo =o' \Jo -s) *
3 w(ﬂ)dﬂ
< fo 7= )1 . ( o G ) Tu®, 1> 0.

Next, observing that E,(—C,t*) < C1t™* (for some positive constant C;) away from zero, we have

de w(dn )\’ oo [ de .
L (1 — &)@ ( ) <[I'(l = a)E(-C,t )]ZL W S GE(=Cut?), t >ty >0,

o @t—m)"
where C, := C,I'*(1 — a)/a. Therefore,
o $ wipdn \ [ ¢ ¥ (s)ds
2Tl a)foD‘ﬁfoa o ﬂ(o = 77)”)(0 = s)a)dx (5.10)
S| Doy + LECSDT (), 1> 1 > 0. '
— I'(l-a) v 0

Our last evaluation is as follows:

i o = (e "(f " iy - ) W) - p(s)) ds) di) (L (fiﬂ'd‘s)zdx
< +T (D + 5125 01 b o= 5)1 7 ( fo (t—m™ ( I w(m = ) () — y(s)) ds) dn) dx

for 63 > 0. The relations (5.6)—(5.11), when inserted in (5.5), yield

(5.11)

DU5(1) < py (62 + o2 = [ w(5)ds) ID"YIP + b6y Il + k63 llps + Y1
+o(1+52) (wu%)(r) G MDDy (@) + BTN + BT by (1)

ot (1 ( Fa=mye ([ i - ) ) - p(s) ds) dn) dx

for t > 1y > 0. This ends the proof. O

The role of our fourth functional is to control the last term in the evaluation of D*U;(¢). We set

1 t 2
Us(t) := f (f w(t =) [y — yY(s)] ds) dx, t > 0.
o \Jo

Lemma 4. The Caputo fractional derivative of the above functional Uy(t) fulfills the following for
01,00 >0andt>1ty>0:

D Uy(r) < @6, D"y + a»( + 2 4 200 (woy) (1) + B(REDw| oy (1)

, 2
ASHAY P W fo = — (fo (= () wn = ) W) - ¥(s)) ds) d?]) dx.

Proof. A simple fractional differentiation of order @ shows that

DU =2 [] ( fy ot = )10 = ()] ds) D ([ ot = ) [9(0) = p()] ds) dx
i e (e (w0 @ — wsyds) dn) i
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and in view of Proposition 8, we see that

DU =2 [ ([ w(t = ) [w(0) = w(9)] ds) [} *-Dw(t — 5) (1) — ¥(s)) dsdx
+2 fol (f w(t = ) [w(®) = w(s)]ds) dx fo ' w(s)ds) [ Dy
o 1 w $)ds 5.12
_Fg @) fO (fo w(t =) YO~y (s)] ds) 0 (- f)l “( 0f (ﬁz))};lg)( 0§ w(t( s)>d )dx 12

r(l @) J(; Ot (- é:)l @ (J(; (t - 77) (j(‘) w(’] - S) (‘//(77) l//(S)) dS) dn) dx.

This identity (5.12) can be evaluated by Young’s inequality and a similar argument as for relation (5.10)
above, as follows:

D UL(1) < @8, ID°YIP + @ (1 + 24 200 (o) (1) + (D 0| B (o)

, 2
$QELC T, (1) - o fo N (fo (t—m)™ (fon w(n = 5) (Y1) — Y(s)) ds) dn) dx

for 61,0, > 0 and ¢ > ty > 0. The proof is completed. O

The fractional derivative of our fifth functional gives rise to the useful term — ||¢, + gbll2 .

Lemma 5. Let

1 b 1 1 i
Us(t) = pzf DY (@, + ¥)dx + % f Y. .Dpdx — % f D“(pf w(t — s (s)dsdx, t > 0.
0 0 0 0
Then, for 65,065 > 0,

DUs(0) < 45 [@2(1) + O] = kllpe + Y + p2 1D + 55 Eal=Cot®) I

1
+[6 + D, (~Co D@l + A2 (D] oy, )(1) + (%~ p2) ) DD gdx
+8 (b + L) Tpog () + paT e (O) + PaT () + 22T, (0)

: [(wa — [t = swis)ds) (1) + by — [ e - sWi(s)ds) <0>]

ap1d a
2kllel 3(1,) o j(; (— E)l @ (j(; (t - 77) I:j(; w(n S)’/’x(s)ds] dn) d'x r2 0.
Proof. Clearly, from Proposition 5 and the equations of the system, we have

DUs() = [} (g + ) [ — [} it - s)ms)ds ~ k(gy + )| dx
+02 fol DY D (g + Y)dx — 7575 fo o ( o'f [Dy’ (Zildn)( 0f (%Ew)s)(‘:)ds)dx
+ fo DUy D+ % [ ki, ol s o e () (o e Y
[ k(. + 2 fo Wt = W(s)dsdx =2 [ D*D [ w(t — sy(s)dsdx
e (e =mre [ win - wcoa] an) (220
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and after integration by parts,

DUs(1) = [sox(wa Jy ot - s);bx(s)ds)]l—knsox+w||2+pz||D“w||2

(bp‘ p2)f0 D“wxDagodx - & D“goD“fo w(t — W (s)dsdx
. ¢ [Doymp] dn $ (@xty) (s)ds
TTC-a) Jo fo (t—f)' a( 0w 0w )

__abpy f ¢ [wp]'dn f [Doe()] ds
kI'(1-a) 0 0 (1— 6)1 o \Jo (-mp° (1=s5)*
ap Ui f [Da(p(S)],dS
s [ e (e[ w(n—S)wx(S)dS] an) (7 22

Repeated use of Young’s inequality leads to
DUs(1) < & |¢2(1) + X(0)| - Kl + YIP + p2 1D
+(% - p2) [y D" D" pdx + P2 o)+ prT g nul0)
+ [(wa [l wlt = un(s)ds) (D) + (b, — [ wlt = 0(s)ds) (0)]
hp"]'(,, () + bp‘TDaw(t) g ch’ch“ fot w(t — W (s)dsdx
riis o e (= [ = waods] an) (7 25k ) ax

Observe that

D ngQ fo w(t — )W ,(s)dsdx

f o [§ FED w(t — sWu(9)ds + gru(0) limg- I'a(t)| dx
LD | [ REDT w(t = 5) W(s) = Y0 ds + (01" “w(r)] dx

==
>*“|7° >*“|7° 5

IA

I/\

and

q 1 @ 7 ’ & [D"go(s)],ds
o b b i (= e [ o = swords] dn) (A ) ax
2
Q, 3 1 ’
< BT () + 55075 10 b &= w( = [f ot - w.s)ds] dn) dx.

Therefore,

DUs(1) < 55 |@3(1) + O] = kllpx + UIF + p2 DY + G Ea(=Cot®) Il
162 + DEL(~Cot 1Dl + 22 (D w| oy ) + (%~ p2) ) D*w.D"pdx
80 (b + L) Toeg(8) + paT e (0) + P2Ta (1) + 22T, (1)

+% [(wa — fot w(t — s)tﬁx(s)ds)2 () + (wa — fot w(t — s)%(s)ds)z (())]
+2karp(116—3a) o1 = g)l = (fo (t—m)~" Uo w(n - S)%(S)ds] dn) dx

for 65,03 > 0. The proof is complete.

To deal with some of the boundary terms in (5.13), we need the functional

1 t
Ug(t) = pzf m(x)D“y (btﬁx(t) — f w(t — s):,bx(s)ds) dx, t >0,
0 0

where m(x) = 2 — 4x, so that m(0) = —m(1) = 2

& 1Dl + k2<|RLD“w| O (1) + DE(=Cot®) DI + 55 Eo(—Cot®) 11

(5.13)
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Lemma 6. The functional Ug(t) verifies along the solutions of (1.2) and (1.3)

D U(1) < = (b = Jj (e = sWa()ds) (1) = (bwr = [} ot = s(s)ds) (©)
+[46 + L2+ BOEL(Cot) | Il + 2K B4 + 62) g + IF
+[2bpa + 63 + BEL(~Cot ) ID Y + @ (4 + —) (@B ) (1)

‘“”*I’“D“wl W0 + 02T, (0 + 42 (14 3) Tona(0)
oty (1 ( =9 (f s - nuuodr) ds) dx

fort>0ando; >0, i=2,3,4.

Proof. Clearly, a direct application of Proposition 5 gives

DUs(1) = ps [ mOD* (D) (byo(t) = [ w(t = s)p(s)ds) dx

2 ) m(X)D"w( D"tﬁx(r) D" [ w(t — sW(s)ds) dx
¢ [Dym)] dn

_r(‘iﬁfm A m(x) fo = 5)1 - ( v ) X (fog(t -85 (wa(s) - fos w(s — 0')%(0')610')/ ds) dx,

and using the second equation of our system gives

DUs(t) < [} m(x) (bW~ ) lt = sWia(s)ds) (b — fy wlt = s)(s)ds) dx
~k [ m(x) s+ ) (b — [} 0t = sWia()ds) dx + bpy [ m(x)D* YD (D)dx
—pP2 fo m(X)Dw!ﬁDf’fo w(t — W (s)dsdx +p2b27'w (1) + 4p, (1 + )TD (D) (5.14)

[0 1
+2F€12(—sz) [ 0’ — 5)17 (fo (t—29)" (fo w(s — T)l//x(T)dT) ds) dx, 63>0, t> 0.

Notice that, employing the relations (5.2) and (5.3), integrations by parts and Young’s inequality gives

02 fol m(x)D*yD* foz w(t — s, (s)dsdx
= p2 [ mED W | [} RED" w(t — sWi(s)ds + Ya(0) limyor I'0(0)] dx

t 5.15
=p ) m)D" [ 7 F-D" (1 = 5) Wi(s) = g0 ds + YOI (1) dx o1
< 6 IDYIP + S22 (D w| Oy ) (1) + DEo(=Cot®) (DA + o3 Ill?)
1 t
ky moXe+ ) (b= et~ (s)ds)d 5.16)

<264+ ) llgx + YIP + 2 Il + 52 (WD) (o),

Jo 1) (s = i (0 = Wrs(9)s) (b = [ ot = 5)(s)ds) d
= = (v = fy &t = W) (1) = (b, = [ lt = s(s)ds) (O)
3 @ |[(b= [ w)ds) s+ [ ot =) @) w0 ds] dx (5-17)

t 2 ' ’
B (wa ~ [l - s)%(s)ds) (- (wa — Jj wi - s)wx(s)ds) 0)
+AD? 1> + 4@(wty )(0),
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e f : m(x)D"wD"wx(t)dx = % fol m(x)%{ (DYY)* dx
= Lm0 (D7), ~ 4 [ (0 (D*9)? dx < 21D
It suffices now to apply the previous estimations (5.15)—(5.18) in (5.14) to obtain the following for
6i>0,i=23,4
DU < = (b — [} wlt = W()ds) (1) = (b — [ it = swa()ds) (©)
+ 467 + &£ + PIBEL(~Cot®)| Il + 2k (64 + 62) g + W + @ (4 + 5 (WD )(0)
+[2bp, + 52 + DEL(=C )] DY + ‘“p2(|RLDaw| O )(8) + pab? Ty, (1) + 4p2 (1 + L) Ty (1)

ap203 1 a
+2r(p1f}y) b Jo (t g)' — (fo (t—s) (fo w(s — T)lﬁx(T)dT) ds) dx, t > 0.

(5.18)

The proof is over. O

The derivative of the next functional provides us with the boundary terms needed to control the
other remaining corresponding boundary terms in Lemma 5. Let

1
Uq(t) := py f m(x)p. D%pdx, t > 0.
0
Lemma 7. The above functional U(t) satisfies

DU (1) < 2p1 IID = k[2(1) + ¢X(0)] + 6k llgs + yIF
FT AP + 801 T (1) + 801 T, (1) + 401 T ey (1), £ > 0.

Proof. Proceeding similarly to the previous lemmas, it appears that

1 1
DUs(t) = pi |, m(x)D“«pr“sodx +p1 Jy m(x)@.D (D) dx
o [ex]'dn\ ( ¢ [D7¢(s)] ds
i-a7 Jo i )fo (= f)l ¢ (fo (=) )( 0 W)dx
4 [ (0) (D) dx + k[ m(x)u (@, + )edx + 40, T, () + 401 T (1)

or
DU (1) < 201 [ID°@P + &[], — & [ ' Cog2dx + kgl
+k ||1//x||2 + 40T, (1) + 4,017"Da¢(t) t>0.

Next, we employ the inequality [|g.|[* < 2|l¢x + ¥II* + 2 |[i,]* to reach

DU (1) < 2p1 1Dl — k[ @2(1) + @2(0)| + 6k [l + P + Tk Iyl
+801T,20(1) + 8017, (1) + 4p Ty (1), 1> 0.

The proof is complete. O

Consider the problem
_WXX = l/’xa X € (O’ 1)’
w0) =w(1)=0

The last functional is

1
Us(1) ::f(ple“go + P2y D Y)dx.
0
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Lemma 8. The above functional Ug(t) satisfies the following for 6,65 > 0andt > 0 :

D U(®) < (0185 + p2) ID"YIP + £- 1D + 2 (wny,)(0)
+]62 = (b= [} wis)ds)| Iy +(P1+Pz)T¢X(f)+PlTDlF¢(f)+P2¢Dﬂ¢(¢)-

Proof. Proposition 5 implies that

1 1 1

DUg(t) = py fo D“wD“godx +p1 fo wD®* (D) dx + p> fo YD*(D*Y)dx
a2 _ ¢ [wa]'dn [D¢(s)] ds

+02 ”D w” — F(lpla) A j(; =€ )1 e ( =N )(j(; (=) )

__ap f ¢ [ym]'dn f [Dy(s)] ds
T(l-a) Jo Jo (z—§>' “\Jo G- 0 (-9

Considering the solutions of (1.3), this relation may be estimated by

D Us(1) < p1s ID* I + 2= 1Dl + kfo W(Qpx + t)xdx

02 IDWIP + [} b - fo W(t = W (8)ds = k(g + )| dx
+01Tw(0) + P1T pey(t) + P2 Ty (1) + P2T pay(2),

and because ||Dw|* < ||D"w||2 (by applying D* to both sides, multiplying by D*w and integrating by
parts), we find that

1
D Us(t) < 165 IID"YIP + £ 1Dl ~ k [ wiles + ¥)dax + pa 1Dy

[ u|(o- [ os)ds) v+ fo W(t = ) W) = Yra(8)) ds = k(ipy + )| dx
+(p1 +02) Ty (1) + p1T pey(t) + 2T pey(2).

Therefore,

DUs(t) < (p185 + p2) ID*YIP + £- ||D%|?

~f (o - [ o).+ w(r— $) Wult) = W(5)) ds| dx

+(p1 +p2) Ty (1) + 1T pay(t) + 2T pay(t)
or

D Us(t) < (0185 + p2) DI + L= (ID] + 32wy )(1)
+62= (b= [y w(o)ds)| Il + (o1 + o) Tou0) + 1T 1) + P T g ().

The proof is complete. O

6. Stability
We are now ready to state and prove our first theorem. Let
U@®) :=NE ’ MU, >0
(0 := NE@) + ) MU@), 120,
where N and M; are positive constants to be determined inside the proof.
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6.1. Equal speed of propagation

In this subsection, we consider the case when the wave speeds of propagation are equal.

Theorem 2. Assume that the initial data satisfy Uy € D(M) and w satisfies assumption (A). [ ‘% = %,

then the solution of (1.2) and (1.3) goes to rest in a Mittag-leffler manner provided that @ is small
enough, i.e., there exist two positive constants u and L (depending on E(0)) such that

E(t) < LE,(—ut"), t > 0.

Proof. With the help of all previous lemmas above, we compute D*U(#). The idea of the proof is to
reach a fractional differential equation of the form

D*U(t) < -C3U(1), t > tH > 0. 6.1)

Proposition 1 then allows one to conclude the estimation in the theorem but only on (#j, c0). Employing
a continuity argument, we obtain a similar one on [0, #].

Observe first that we can make the terms in E,(—C,t%) as small as we wish by increasing the time .

Consequently, the parameter 6; may be ignored for the time being. Second, take M; = ZTN, Mg = 3%,

04 = % and M, = % For small & (and therefore small ¢,), we are left with two sets of conditions:

7% +p2) Ms < kN,

£ Lo Do <n
0302 M5 + [5 i (1 + L)] p2Ms + poMg < N, €2
(bpﬁspzbz + 14P1+3p2) Ms + Mg (o1 + p2) <
63Ms (p1 +3py) < 2N,

and " p
My _ Ms
FAN

3 (i 32b’) Ms + Mg (%55 + 1) < Mswy,

[bwo+_+M]M5<bM8,

paM3
2, < M.

Take N large enough (63 may also be large) so that the first set of conditions of (6.2) holds. For a
large value of 03, there remains

My o Ms
65<

3 (411 321;) Ms + Mg (%55 + 1) < Mswy,

[bwo+_+M]M5<ng.

Next, choosing M3 large so that the second relation is verified (with ds large), we are left only with

b—w0+E+51b2
4 12 k

]M5 < ng

Proceeding backward, we can select the ignored terms so as to verify all of the conditions. Thus, we
get a relation of the form (6.1). The proof is complete. O
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6.2. Non-equal speed of propagation

In practical problems, the speeds of propagation are not necessarily equal. We will need the
following result for the basic fractional differential equation:

Dx(r) = f(1, x(1))

with 0 as the equilibrium. Let K be the class of strictly increasing continuous functions 4 : [0, +c0) —
[0, +00) satisfying h(0) = 0

Proposition 9. [11] Assume that f is a nonnegative bounded function such that I° f,0 < a < 1 is also
bounded. Then, liminf,_,, f(f) =0

Proposition 10. [12] If there exist a Lyapunov function Z(t, x(t)) and two functions $(.) and 9,(.)
in K such that, for all x # 0, 9(||x()|]) < Z(¢, x(t)) < K (||Ix(@)|]) and D*Z(x(t),t) < 0,0 < a < 1, then
the equilibrium is Lyapunov uniformly stable.

Theorem 3. Assume that U, € D(M) and the speeds of propagation are not necessarily equal. Then,
we have that liminf,_., E(t) = 0. If Y,(0) = 0, then the system is Lyapunov uniformly stable for small
values of @.

We need to come up with a Lyapunov function whose fractional derivative is non-positive. We
recall, from the previous section, that after putting back the non-zero term

b 1
(ﬂ—Pz) f DD pdx
k 0

in Us(?), as follows

b 1
DQU(I) < —CL4E(t) + M5 (% —pz)f DalﬁxDa/(pd)C, t>19 >0,
0

we pass to the higher-order energy. Rewriting E(¢) in the form E(f) = E(t,¢,y) to account for the
dependence on ¢ and ¥, we define the “2a-order’ energy by

E () := E(t,D, DY), t > 0,

that is,
E(t) := 1 |p1 1D (D*@)I + p2 DT (DY) + (b = [ w(s)ds) 1D
+kIID® (@ + WP + (DD ()|, 12 0.

We find that
DE(t) = p1D* (D*¢) D* [D* (D*¢)| + p2D* (D) D* [D* (D*¥)] — %I““w(t) ||D“1ﬁx||2

+ (b~ [ w(s)ds) Dy, D" (D"0) + kD® (i, + ) D* [D° (¢, + )]
+4 D%me%)(r) = (b= J 0()ds) Torwy = PrT o0 = P2 T 000 = KT v

€ w(pdy [(D*w)%(5)] ds
T<1 @) fO fO (t—«f)‘ “ ( 0 (- fo (—3)" dx
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From Proposition 7, we have the following for ¢ > O:
3D (@BDy,) = 5(*ED*wn DY, )(1)

1 t . t 2
= Jy D (D) [ wlt = )D"Y(s)dsdx + § (J5 w(t = s)ds) D Dy
__ a ¢ dg (€ wapdy (€ [ID W] ds

b (l-a) Jo =& Jo @-np)* Jo (t—s)*

o (L _de pf [0wom]dy (¢ o ([* a ’
i fo fo o b s (fo (t—9) (fo w(s —1)D tﬁx(T)dr) ds)dx.

Therefore, for 6¢ > 0, it follows that

D E(t) < %(RLDQCUDD”%)U) - %Il_”w(f) DY |I* + (86 — wo) T pey,
—017 De(peg) — P2T DDy — KT De(p, vy

: ,\2
bt [ ( Fi@= s () w(s - DD (v)d) ds) dx.

Proposition 11. Assume that k, f are two continuous functions on (0, +o0) such that
I'"k(0), ' (1) € C'([0, ).
Then,

(J5 k(s)ds) Do f(e) = [ kit = $)[D*f(2) = D*f(s)|ds — [} KDk (¢ = ) [£(1) = f(5)] ds
+I'"%k() f(£) — FOOM'~k(t) — k()" £(0), t > 0.

Proof. Clearly, for ¢t > 0,
Jy k& = ) [D"f(6) = D f ()] ds = [ *-D%k (¢ = 5) [f(t) = f(s)]ds

(6.3)

= ([, k(s)ds) D*£(1) = [} k(t = $)D* f(s)ds = [I'k(r) = I'""k(0)] f(2) + [j REDk (¢ = 5)f(5)ds.

On one hand, by Proposition 4, we find

! !
RLpa f k(t — s)f(s)ds = f REDY k(t — 5)f(s)ds + f(OI'™k(0),
0 0
and on the other hand, the relationship between both derivatives gives
LD [Tk(s)f(t = $)ds = [ k(s) F-D* f(t = s)ds + k()] £(0)
= [y kit = $)[Dof(s) + 5LD] ds + k(1" £(0)

I(1-a)
= [ k(t = D f(s)ds + 222 [ k(s)(t — 5)ds + k(D' (0)
= [ k(t = D f(s)ds + fFO)'k(t) + k(D' £(0).

T(1-a) Jo

Therefore,

i RED® k(t = $)f(s)ds + f('"°k(0) = [} k(t = $)D* f(s)ds + f(O)'~k(t) + k()" f(0),

and
i k(e = $)[D*F() = D f(s)| ds — [y KDk (t = 5) [£(t) — f(s)] ds
= ([} k(s)ds) D f = I'k(t) f(2) + F(O)'"k(z) + k(D' £(0), 1 > 0.

The proof of the proposition is complete.

(6.4)

O
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Multiplying the relation (6.4) by g(z), then integrating over (0, 1) and applying Young’s inequality,
we obtain the following:

Corollary 1. Assume that k, f are two continuous functions on (0, +00) such that
I'™k(1), f(1) € C'(0, ),
and f,Df,g € L*(0,1). Then,

(i k(s)ds) [, g (D) dx < 2e g + L ([ k(s)ds) kD £)(1) + L ([ [*-Dk| ds)
2 2
(DK o@ + L1k | 1AR + L [k [ 1F O + L@ 1 fO) . 1> 0.
In the case that g = D“f, this corollary gives the following:

Corollary 2. Assume that k, f are two continuous functions on (0,+00) such that I'"*k(t), f(t) €
C'(0, ). Then,

(5 k(s)ds — 2¢)[ID° {nz < L( [ k(s)ds) (kD" f)(0) + L[ [F*EDek] dsz) (*Dk| o f)()

+L[ k@] IAP + L[k IO + RO |1 FO), £ 0.

Proof of Theorem 3. (Sketch) As in the previous section, we suggest using the new functional

1 t 2
Uy(t) := f (f w(t — s)D“gbx(s)ds) dx, t >0
0o \Jo

to deal with the problematic term

1 ¢ df : s ’ 2
L [) —(t—g-‘)l‘“ (j:(t— )7 (f(; w(s—T)D"wx(T)dT) ds) dx,

and proceed similarly. Combining (6.3), D*U and the above corollaries, for

V() = NCED) + E)+ Y MU0,

we arrive at
D*V(t) < —~CsE(t) + Cs [Ea(=C otV I O)*, £ > 19 > 0

for small @ and large ¢, for some C5,C¢ > 0. Applying I to both sides gives

V() = V(0) = g5 [t = 7' D*V(s)ds + 75 [ (¢ = ) DV (s5)ds

< o = I DV(s)ds + s [t = 9" {=C5E@) + Co [Ea(=Cot)T 0r(O)II} ds.

Notice that, by the continuity of D*V(s) (below, all constants C;, i = 7, ..., 12 are positive),

10 0]
f (t — ) 'DV(s)ds < f (to — $)* DV (s)|ds < Cqty°.
0 0

Thus, c
t a
T2 4 Col® [Eo(—Cot)T* (O],
()

CSIZE(r) < V(0) +
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and by Proposition 3, for ¢ > 1), we have

I [EQ(—CuptO)]* < I [Cyt @ Eq(~Ct?)] < CoEqQ(—Copt?) < Cho.

Hence,

C11E(t) + IgE(t) < Cqs.

The first conclusion follows from Proposition 9 and the second one from Proposition 10. O

7. Numerical simulations

In this section, we shall present some numerical examples to validate the results obtained for both
the equal speed of propagation and non-equal speed of propagation cases.

Example 1. Consider the system (1.2) and (1.3) with the following selected functions and parameters:
@o(x) = €7 cos(mx), Yo(x) = 2¢7% sin(27x), ¢1(x) = Yi(x) = 0, w(t) = e, B = 1.96, k = b = 2,
p1=p2=2,x€]0,10], 7 € [0,2].

The condition (A) and the equality p% = p% are satisfied. By means of Theorem 2, the solutions

@(x,t) and y(x,t) go toward zero in a Mittag-Leffler manner. This finding is illustrated in Figures 1
and 2, depicting the variation of ¢(x, ) and ¥(x, t) as functions of spatial and temporal variables in the
range [0, 10] x [0, 2]. Figures 3 and 4 show the dissipativity of the vibrations relative to the x-axis as
the time variable rises.

p(z,t)

10 5 0.5 4

Figure 1. The solution ¢(x, #) of the problem (1.2) and (1.3).
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10 - 0.5 ¢

Figure 2. The solution /(x, t) of the problem (1.2) and (1.3).
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Figure 4. The solution /(x, t) of the problem (1.2) and (1.3) for different values of .

Example 2. Consider the system (1.2) and (1.3) involving the functions and parameters that are taken
Volume 8, Issue 10, 24632-24662.
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as ¢o(x) = 0.5 sin(%nx), Yo(x) = 2xcos(mx), ¢1(x) = Y1 (x) =0, w(t) = e, B =196,k =2,b = 1.5,
p1=3,p=1,x€[0,10], 1€ [0,2].

The conditions (A) and p% * p% are met. Thus, Theorem 3 can be applied, which means that
the solutions ¢(x, 7) and y(x,t) go toward zero as a Mittag-Leffler function. This may be visualized
in Figures 5 and 6, representing the behavior of solutions ¢(x,?) and ¥(x,#) in [0, 10] X [0,2]. The
oscillations of ¢(x, ) and ¥(x, ) with regard to the spatial variable, decrease as the temporal variable
increases, as illustrated in Figures 7 and 8.

©(z, 1)
7

10 " 0.5 +

Figure 5. The solution ¢(x, ) of the problem (1.2) and (1.3).

Uz, t)

0.5
10 ¢ t

Figure 6. The solution /(x, t) of the problem (1.2) and (1.3).
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S t=0
e b= 1125
t=10.25
——— t=105
=1 e
i t=15 i
T =]

P(z,t)

20 | I I | 1 1 | | 1
0

Figure 8. The solution /(x, t) of the problem (1.2) and (1.3) for different values of .

8. Conclusions

In this work, we have examined the dynamics of a Timoshenko beam operating in an anomalous
media. It is derived from the classical Timoshenko model by replacing the integer-order derivatives
with fractional ones between one and two. Actually, sequential fractional derivatives are better suited
for the multiplier technique. It is shown that a viscoelastic damping process acting on the rotational
component is capable of driving the structure to equilibrium with a Mittag-Lefller rate in the case of
equal speed of propagation and a relaxation function satisfying a fractional inequality whose solutions
are bounded above by Mittag-leffler functions. This generalizes a similar case of exponential stability
which happens in the classical (integer-order) case. When the speeds of propagation are not equal, the
situation is much more complicated and differs from the classical situation. We have obtained only a
uniform Lyapunov stability without a specific rate.
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