Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives

  • Received: 24 May 2023 Revised: 02 July 2023 Accepted: 06 July 2023 Published: 19 July 2023
  • MSC : 26A33, 34B10, 34B15

  • Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function Ψ (shortly Ψ-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.

    Citation: Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad. On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives[J]. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172

    Related Papers:

    [1] Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314
    [2] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062
    [3] Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661
    [4] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [5] Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117
    [6] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [7] Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808
    [8] Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619
    [9] M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and MW-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780
    [10] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
  • Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function Ψ (shortly Ψ-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.



    The convexity of function is a classical concept, since it plays a fundamental role in mathematical programming theory, game theory, mathematical economics, variational science, optimal control theory and other fields, a new branch of mathematics, convex analysis, appeared in the 1960s. However, it has been noticed that the functions encountered in a large number of theoretical and practical problems in economics are not classical convex functions, therefore, in the past decades, the generalization of function convexity has attracted the attention of many scholars and aroused great interest, such as h-convex functions [1,2,3,4,5], log-convex functions [6,7,8,9,10], log-h-convex functions [11], and especially for coordinated convex [12]. Since 2001, various extensions and generalizations of integral inequalities for coordinated convex functions have been established in [12,13,14,15,16,17].

    On the other hand, calculation error has always been a troublesome problem in numerical analysis. In many problems, it is often to speculate the accuracy of calculation results or use high-precision operation as far as possible to ensure the accuracy of the results, because the accumulation of calculation errors may make the calculation results meaningless, interval analysis as a new important tool to solve uncertainty problems has attracted much attention and also has yielded fruitful results, we refer the reader to the papers [18,19]. It is worth notion that in recent decades, many authors have combined integral inequalities with interval-valued functions(IVFs) and obtained many excellent conclusions. In [20], Costa gave Opial-type inequalities for IVFs. In [21,22], Chalco-Cano investigated Ostrowski type inequalities for IVFs by using generalized Hukuhara derivative. In [23], Román-Flores derived the Minkowski type inequalities and Beckenbach's type inequalities for IVFs. Very recently, Zhao [5,24] established the Hermite-Hadamard type inequalities for interval-valued coordinated functions.

    Motivated by these results, in the present paper, we introduce the concept of coordinated log-h-convex for IVFs, and then present some new Jensen type inequalities and Hermite-Hadamard type inequalities for interval-valued coordinated functions. Also, we give some examples to illustrate our main results.

    Let RI the collection of all closed and bounded intervals of R. We useR+IandR+ to represent the set of all positive intervals and the family of all positive real numbers respectively. The collection of all Riemann integrable real-valued functions on [a,b], IVFs on [a,b] and IVFs on =[a,b]×[c,d] are denoted by R([a,b]), IR([a,b]) and ID(). For more conceptions on IVFs, see [4,25]. Moreover, we have

    Theorem 1. [4] Let f:[a,b]RI such that f=[f_,¯f]. Then fIR([a,b]) iff f_, ¯fR([a,b]) and

    (IR)baf(x)dx=[(R)baf_(x)dx,(R)ba¯f(x)dx].

    Theorem 2. [25] Let F:RI. If FID(), then

    (ID)F(x,y)dxdy=(IR)badx(IR)dcF(x,y)dy.

    Definition 1. [26] Let h:[0,1]R+. We say that f:[a,b]R+I is interval log-h-convex function or that fSX(log-h,[a,b],R+I), if for all x,y[a,b] and ϑ[0,1], we have

    f(ϑx+(1ϑ)y)[f(x)]h(ϑ)[f(y)]h(1ϑ).

    h is called supermultiplicative if

    h(ϑτ)h(ϑ)h(τ) (2.1)

    for all ϑ,τ[0,1]. If "" in (2.1) is replaced with "", then h is called submultiplicative.

    Theorem 3. [26] Let F:[a,b]R+I,h(12)0. If FSX(log-h,[a,b],R+I) and FIR([a,b]), then

    F(a+b2)12h(12)exp[1babalnF(x)dx][F(a)F(b)]10h(ϑ)dϑ. (2.2)

    Theorem 4. [27] Let F:[a,b]R+I,h(12)0. If FSX(log-h,[a,b],R+I) and FIR([a,b]), then

    [F(a+b2)]14h2(12)[F(3a+b4)F(a+3b4)]14h(12)(baF(x)dx)1ba[F(a)F(b)F2(a+b2)]1210h(ϑ)dϑ[F(a)F(b)][12+h(12)]10h(ϑ)dϑ. (2.3)

    In this section, we define the coordinated log-h-convex for IVFs and prove some new Jensen type inequalities and Hermite-Hadamard type inequalities by using this new definition.

    Definition 2. Let h:[0,1]R+. Then F:R+I is called a coordinated log-h-convex IVFs on if the partial mappings

    Fy:[a,b]R+I,Fy(x)=F(x,y),Fx:[c,d]R+I,Fx(y)=F(x,y)

    are log-h-convex for all y[c,d] and x[a,b]. Then the set of all coordinated log-h-convex IVFs on is denoted by SX(log-ch,,R+I).

    Definition 3. Let h:[0,1]R+. Then F:R+ is called a coordinated log-h-convex function in if for any (x1,y1),(x2,y2) and ϑ[0,1] we have

    F(ϑx1+(1ϑ)x2,ϑy1+(1ϑ)y2)[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1ϑ). (3.1)

    The set of all log-h-convex functions in is denoted by SX(log-h,,R+). If inequality (3.1) is reversed, then F is said to be a coordinated log-h-concave function, the set of all log-h-concave functions in is denoted by SV(log-h,,R+).

    Definition 4. Let h:[0,1]R+. Then F:R+I is called a coordinated log-h-convex IVF in if for any (x1,y1),(x2,y2) and ϑ[0,1] we have

    F(ϑx1+(1ϑ)x2,ϑy1+(1ϑ)y2)[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1ϑ).

    The set of all log-h-convex IVFs in is denoted by SX(log-h,,R+I).

    Theorem 5. Let F:R+I such that F=[F_,¯F]. If FSX(log-h,,R+I) iff F_SX(log-h,,R+) and ¯FSV(log-h,,R+).

    Proof. The proof is completed by combining the Definitions 3 and 4 above and the Theorem 3.7 of [4].

    Theorem 6. If FSX(log-h,,R+I), then FSX(log-ch,,R+I).

    Proof. Assume that FSX(log-h,,R+I). Let Fx:[c,d]R+I,Fx(y)=F(x,y). Then for all ϑ[0,1] and y1,y2[c,d], we have

    Fx(ϑy1+(1ϑ)y2)=F(x,ϑy1+(1ϑ)y2)F(ϑx+(1ϑ)x,ϑy1+(1ϑ)y2)[F(x,y1)]h(ϑ)[F(x,y2)]h(1ϑ)=[Fx(y1)]h(ϑ)[Fx(y2)]h(1ϑ).

    Hence Fx(y)=F(x,y) is log-h-convex on [c,d]. The fact that Fy(x)=F(x,y) is log-h-convex on [a,b] goes likewise.

    Remark 1. The converse of Theorem 6 is not generally true. Let h(ϑ)=ϑ and ϑ[0,1], 1=[π4,π2]×[π4,π2], and F:1R+I be defined:

    F(x,y)=[esinxsiny,64xy].

    Obviously, we have that FSX(log-ch,1,R+I) and FSX(log-h,1,R+I). Indeed, if (π4,π2),(π2,π4)1, we have

    F(ϑπ4+(1ϑ)π2,ϑπ2+(1ϑ)π4)=[esinϑπ4sin(1ϑ)π2,8π2ϑ(1ϑ)],(F(π4,π2))h(ϑ)(F(π2,π4))h(1ϑ)=[e(122)ϑ1,2ϑ+1π].

    If ϑ=0, then

    [0,1e][1e,2π].

    Thus, FSX(log-h,1,R+I).

    In the following, Jensen type inequalities for coordinated log-h-convex functions in is considered.

    Theorem 7. Let piR+,xi[a,b],yi[c,d],(i=1,2,...,n),F:R+. If h is a nonnegative supermultiplicative function and FSX(log-h,,R+), then

    F(1Pnni=1pixi,1Pnni=1piyi)ni=1[F(xi,yi)]h(piPn), (3.2)

    where Pn=ni=1pi. If h is a nonnegative submultiplicative function and FSV(log-h,,R+), then (3.2) is reversed.

    Proof. If n=2, then from Definition 3, we have

    F(p1P2x1+p2P2x2,p1P2y1+p2P2y2)[F(x1,y1)]h(p1P2)[F(x2,y2)]h(p2P2).

    Suppose (3.2) holds for n=k, then

    F(1Pkki=1pixi,1Pkki=1piyi)ki=1[F(xi,yi)]h(piPk).

    Now, let us prove that (3.2) is valid when n=k+1,

    F(1Pk+1k+1i=1pixi,1Pk+1k+1i=1piyi)=F(1Pk+1k1i=1pixi+pk+pk+1Pk+1(pkxkpk+pk+1+pk+1xk+1pk+pk+1),1Pk+1k1i=1piyi+pk+pk+1Pk+1(pkykpk+pk+1+pk+1yk+1pk+pk+1))[F(pkxkpk+pk+1+pk+1xk+1pk+pk+1,pkykpk+pk+1+pk+1yk+1pk+pk+1)]h(pk+pk+1Pk+1)k1i=1[F(xi,yi)]h(piPk+1)([F(xk,yk)]h(pkpk+pk+1)[F(xk+1,yk+1)]h(pk+1pk+pk+1))h(pk+pk+1Pk+1)k1i=1[F(xi,yi)]h(piPk+1)[F(xk,yk)]h(pkPk+1)[F(xk+1,yk+1)]h(pk+1Pk+1)k1i=1[F(xi,yi)]h(piPk+1)=k+1i=1[F(xi,yi)]h(piPk+1).

    This completes the proof.

    Remark 2. If h(ϑ)=ϑ, then the inequality (3.2) is the Jensen inequality for log-convex functions.

    Now, we prove the Jensen inequality for log-h-convex IVFs in .

    Theorem 8. Let piR+,xi[a,b],yi[c,d],i=1,2,...,n,F:R+I such that F=[F_,¯F]. If h is a nonnegative supermultiplicative function and FSX(log-h,,R+I), then

    F(1Pnni=1pixi,1Pnni=1piyi)ni=1[F(xi,yi)]h(piPn), (3.3)

    where Pn=ni=1pi. If FSV(log-h,,R+I), then (3.3) is reversed.

    Proof. By Theorem 5 and Theorem 7, we have

    F_(1Pnni=1pixi,1Pnni=1piyi)ni=1[F_(xi,yi)]h(piPn)

    and

    ¯F(1Pnni=1pixi,1Pnni=1piyi)ni=1[¯F(xi,yi)]h(piPn).

    Thus,

    F(1Pnni=1pixi,1Pnni=1piyi)=[F_(1Pnni=1pixi,1Pnni=1piyi),¯F(1Pnni=1pixi,1Pnni=1piyi)][ni=1[F_(xi,yi)]h(piPn),ni=1[¯F(xi,yi)]h(piPn)]=ni=1[F(xi,yi)]h(piPn).

    This completes the proof.

    Next, we prove the Hermite-Hadamard type inequalities for coordinated log-h-convex IVFs.

    Theorem 9. Let F:R+I and h:[0,1]R+ be continuous. If FSX(log-ch,,R+I), then

    [F(a+b2,c+d2)]14h2(12)exp[14h(12)(12h(12)(ba)balnF(x,c+d2)dx+12h(12)(dc)dclnF(a+b2,y)dy)]exp[1(ba)(dc)badclnF(x,y)dxdy]exp[1210h(ϑ)dϑ(1babalnF(x,c)dx+1abalnF(x,d)dx+1dcdclnF(a,y)dy+1dcdclnF(b,y)dy)][F(a,c)F(a,d)F(b,c)F(b,d)](10h(ϑ)dϑ)2. (3.4)

    Proof. Since FSX(log-ch,,R+I), we have

    Fx(c+d2)=Fx(ϑc+(1ϑ)d+(1ϑ)c+ϑd2)[Fx(ϑc+(1ϑ)d)]h(12)[Fx((1ϑ)c+ϑd)]h(12).

    That is,

    lnFx(c+d2)h(12)ln[Fx(ϑc+(1ϑ)d)Fx((1ϑ)c+ϑd)].

    Moreover, we have

    1h(12)lnFx(c+d2)[10lnFx(ϑc+(1ϑ)d)dϑ+10lnFx((1ϑ)c+ϑd)dϑ]=[10lnF_x(ϑc+(1ϑ)d)dϑ,10ln¯Fx(ϑc+(1ϑ)d)dϑ]+[10lnF_x((1ϑ)c+ϑd)dϑ,10ln¯Fx((1ϑ)c+ϑd)dϑ]=2[1dcdclnF_x(y)dy,1dcdcln¯Fx(y)dy]=2dcdclnFx(y)dy.

    Similarly, we get

    1dcdclnFx(y)dyln[Fx(c)Fx(d)]10h(ϑ)dϑ.

    Then

    12h(12)lnFx(c+d2)1dcdclnFx(y)dyln[Fx(c)Fx(d)]10h(ϑ)dϑ.

    That is,

    12h(12)lnF(x,c+d2)1dcdclnF(x,y)dyln[F(x,c)F(x,d)]10h(ϑ)dϑ.

    Integrating over [a,b], we have

    12h(12)(ba)balnF(x,c+d2)dx1(ba)(dc)badclnF(x,y)dxdy[1babalnF(x,c)dx+1babalnF(x,d)dx]10h(ϑ)dϑ.

    Similarly, we have

    12h(12)(dc)dclnF(a+b2,y)dy1(ba)(dc)badclnF(x,y)dxdy[1dcdclnF(a,y)dy+1dcdclnF(b,y)dy]10h(ϑ)dϑ.

    Finally, we obtain

    14h2(12)lnF(a+b2,c+d2)=14h(12)[12h(12)(ba)balnF(x,c+d2)dx+12h(12)(dc)dclnF(a+b2,y)dy]1(ba)(dc)badclnF(x,y)dxdy1210h(ϑ)dϑ[1babalnF(x,c)dx+1babalnF(x,d)dx+1dcdclnF(a,y)dy+1dcdclnF(b,y)dy]12(10h(ϑ)dϑ)2[lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)+lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)](10h(ϑ)dϑ)2[lnF(a,c)F(a,d)F(b,c)F(b,d)].

    This concludes the proof.

    Remark 3. If F_=¯F and h(ϑ)=ϑ, then Theorem 9 reduces to Corollary 3.1 of [13].

    Example 1. Let [a,b]=[c,d]=[2,3],h(ϑ)=ϑ. We define F:[2,3]×[2,3]R+I by

    F(x,y)=[1xy,ex+y].

    From Definition 2, F(x,y)SX(log-ch,,R+I).

    Since

    [F(a+b2,c+d2)]14h2(12)=[425,e10],exp[14h(12)(12h(12)(ba)balnF(x,c+d2)dx+12h(12)(dc)dclnF(a+b2,y)dy)]=[8e135,e102+23423],exp[1(ba)(dc)badclnF(x,y)dxdy]=[16e2729,e43(3322)],exp[1210h(ϑ)dϑ(1babalnF(x,c)dx+1babalnF(x,d)dx+1dcdclnF(a,y)dy+1dcdclnF(b,y)dy)]=[26e81,e153526],

    and

    [F(a,c)F(a,d)F(b,c)F(b,d)](10h(ϑ)dϑ)2=[16,e2+3].

    It follows that

    [425,e10][8e135,e102+23423][16e2729,e43(3322)][26e81,e153526][16,e2+3]

    and Theorem 9 is verified.

    Theorem 10. Let F:R+I and h:[0,1]R+ be continuous. If FSX(log-ch,,R+I), then

    [F(a+b2,c+d2)]14h3(12)exp[14h2(12)(ba)baln(F(x,c+d2))dx+14h2(12)(dc)dcln(F(a+b2,y))dy]exp[14h(12)(ba)baln(F(x,3c+d4)F(x,c+3d4))dx+14h(12)(dc)dcln(F(3a+b4,y)F(a+3b4,y))dy]exp[2(ba)(dc)badclnF(x,y)dxdy] (3.5)
    exp[12(ba)baln(F(x,c)F(x,d)F2(x,fracc+d2))dx10h(ϑ)dϑ+12(dc)dcln(F(a,y)F(b,y)F2(a+b2,y))dy10h(ϑ)dϑ]exp[(12+h(12))1babaln[F(x,c)F(x,d)]dx10h(ϑ)dϑ+(12+h(12))1dcdcln[F(a,y)F(b,y)]dy10h(ϑ)dϑ][F(a,c)F(a,d)F(b,c)F(b,d)F(a+b2,c)F(a+b2,d)×F(a,c+d2)F(b,c+d2)][12+h(12)](10h(ϑ)dϑ)2[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(10h(ϑ)dϑ)2.

    Proof. Since FSX(log-ch,,R+I), by using Theorem 6 and (2.3), we have

    14h2(12)ln[Fy(a+b2)]14h(12)ln[Fy(3a+b4)Fy(a+3b4)]1babalnFy(x)dx12ln[Fy(a)Fy(b)F2y(a+b2)]10h(ϑ)dϑ[12+h(12)]ln[Fy(a)Fy(b)]10h(ϑ)dϑ.

    That is,

    14h2(12)ln[F(a+b2,y)]14h(12)ln[F(3a+b4,y)F(a+3b4,y)]1babalnF(x,y)dx12ln[F(a,y)F(b,y)F2(a+b2,y)]10h(ϑ)dϑ[12+h(12)]ln[F(a,y)F(b,y)]10h(ϑ)dϑ.

    Moreover, we have

    14h2(12)(dc)dcln[F(a+b2,y)]dy14h(12)(dc)dcln[F(3a+b4,y)F(a+3b4,y)]dy1(ba)(dc)badclnF(x,y)dxdy12(dc)dcln[F(a,y)F(b,y)F2(a+b2,y)]dy10h(ϑ)dϑ[12+h(12)]1dcdcln[F(a,y)F(b,y)]dy10h(ϑ)dϑ.

    Similarly, we have

    We also from (2.2),

    12h(12)lnF(a+b2,c+d2)1babalnF(x,c+d2)dx,12h(12)lnF(a+b2,c+d2)1dcdclnF(a+b2,y)dy.

    Again from (2.3),

    1babalnF(x,c)dx12ln[F(a,c)F(b,c)F2(a+b2,c)]10h(ϑ)dϑ[12+h(12)]ln[F(a,c)F(b,c)]10h(ϑ)dϑ,1babalnF(x,d)ds12ln[F(a,d)F(b,d)F2(a+b2,d)]10h(ϑ)dϑ[12+h(12)]ln[F(a,d)F(b,d)]10h(ϑ)dϑ,1dcdclnF(a,y)dy12ln[F(a,c)F(a,d)F2(a,c+d2)]10h(ϑ)dϑ[12+h(12)]ln[F(a,c)F(a,d)]10h(ϑ)dϑ,1dcdclnF(b,y)dy12ln[F(b,c)F(b,d)F2(b,c+d2)]10h(ϑ)dϑ[12+h(12)]ln[F(b,c)F(b,d)]10h(ϑ)dϑ

    and proof is completed.

    Example 2. Furthermore, by Example 1, we have

    and

    [F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(10h(θ)dθ)2=[136,e23+22].

    It follows that

    [16625,e210][64e218225,e4(3322)+3103][256e272171,e4(3322)3+3+112][256e4531441,e8(3322)3][166e210935,e12382+3106][8e22187,e153523][690,e33+32+102][136,e23+22]

    and Theorem 10 is verified.

    We introduced the coordinated log-h-convexity for interval-valued functions, some Jensen type inequalities and Hermite-Hadamard type inequalities are proved. Our results generalize some known inequalities and will be useful in developing the theory of interval integral inequalities and interval convex analysis. The next step in the research direction investigated inequalities for fuzzy-interval-valued functions, and some applications in interval nonlinear programming.

    The first author was supported in part by the Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500) and the National Key Research and Development Program of China (2018YFC1508100).

    The authors declare no conflict of interest.



    [1] M. Ortigueira, J. Machado, Which derivative? Fractal Fract., 1 (2017), 3. https://doi.org/10.3390/fractalfract1010003 doi: 10.3390/fractalfract1010003
    [2] S. Hussain, M. Sarwar, N. Mlaiki, F. Azmi, Existence and controllability of fractional semilinear mixed Volterra-Fredholm integro differential equation, Alex. Eng. J., 73 (2023), 259–267. https://doi.org/10.1016/j.aej.2023.04.029 doi: 10.1016/j.aej.2023.04.029
    [3] Kamran, S. U. Khan, S. Haque, N. Mlaiki, On the approximation of fractional-order differential equations using Laplace transform and weeks method, Symmetry, 15 (2023), 1214. https://doi.org/10.3390/sym15061214 doi: 10.3390/sym15061214
    [4] A. Ali, K. J. Ansari, H. Alrabaiah, A. Aloqaily, N. Mlaiki, Coupled system of fractional impulsive problem involving power-law kernel with piecewise order, Fractal Fract., 7 (2023), 436. https://doi.org/10.3390/fractalfract7060436 doi: 10.3390/fractalfract7060436
    [5] Asma, J. F. G. Aguilar, G. U. Rahman, M. Javed, Stability analysis for fractional order implicit Ψ-Hilfer differential equations, Math. Method. Appl. Sci., 45 (2021), 2701–2712. https://doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
    [6] S. A. David, C. A. Valentim, Fractional Euler-lagrange equations applied to oscillatory system, Mathematics, 3 (2015), 258–272. https://doi.org/10.3390/math3020258 doi: 10.3390/math3020258
    [7] M. S. Abdo, W. Shammakh, H. Z. Alzumi, N. Alghamd, M. D. Albalwi, Nonlinear piecewise Caputo fractional pantograph system with respect to another function, Fractal Fract., 7 (2023), 162. https://doi.org/10.3390/fractalfract7020162 doi: 10.3390/fractalfract7020162
    [8] F. Evirgen, Transmission of Nipah virus dynamics under Caputo fractional derivative, J. Comput. Appl. Math., 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654 doi: 10.1016/j.cam.2022.114654
    [9] S. A. David, C. A. Valentim, A. Debbouche, Fractional modeling applied to the dynamics of the action potential in cardiac tissue, Fractal Fract., 6 (2022), 149. https://doi.org/10.3390/fractalfract6030149 doi: 10.3390/fractalfract6030149
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [11] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [12] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [13] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [14] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theo., 3 (2008), 1–11.
    [15] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [16] S. Zhang, L. Hu, The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable, Azerbaijan J. Math., 9 (2019), 22–45. https://doi.org/10.1007/s13398-018-0572-2 doi: 10.1007/s13398-018-0572-2
    [17] L. Fox, D. F. Mayers, J. R. Ockendon, A. B. Tayler, On a function differential equation, IMA J. Appl. Math., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271
    [18] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1992), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
    [19] J. Hale, Theory of functional differential equations, New York: Springer-Verlag, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [20] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [21] T. Kato, Asymptotic behavior of solutions of the functional differential equation y(x)=y(ϑx)+y(x), Academic Press, 1972.
    [22] K. Mahler, On a special functional equation, J. Lond. Math. Soc., 15 (1940), 115–123. https://doi.org/10.1112/jlms/s1-15.2.115 doi: 10.1112/jlms/s1-15.2.115
    [23] J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London Ser. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [24] M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order 1<α2, Acta Math. Univ. Comen., 84 (2015), 51–57. https://doi.org/10.14232/ejqtde.2015.1.84 doi: 10.14232/ejqtde.2015.1.84
    [25] H. Boulares, A. Benchaabane, N. Pakkaranang, R. Shafqat, B. Panyanak, Qualitative properties of positive solutions of a kind for fractional pantograph problems using technique fixed point theory, Fractal Fract., 6 (2022), 593. https://doi.org/10.3390/fractalfract6100593 doi: 10.3390/fractalfract6100593
    [26] A. Ardjouni, H. Boulares, Y. Laskri, Stability in higher-order nonlinear fractional differential equations, Acta Comment. Univ. Ta., 22 (2018), 37–47. https://doi.org/10.12697/ACUTM.2018.22.04118 doi: 10.12697/ACUTM.2018.22.04118
    [27] A. Hallaci, H. Boulares, A. Ardjouni, A. Chaoui, On the study of fractional differential equations in a weighted Sobolev space, Bull. Int. Math. Virtual Inst., 9 (2019), 333–343. https://doi.org/10.7251/BIMVI1902333H120 doi: 10.7251/BIMVI1902333H120
    [28] A. Ardjouni, H. Boulares, A. Djoudi, Stability of nonlinear neutral nabla fractional difference equations, Commun. Optim. Theory, 121 (2018), 1–10. https://doi.org/10.23952/cot.2018.8. doi: 10.23952/cot.2018.8
    [29] A. Hallaci, H. Boulares, M. Kurulay, On the study of nonlinear fractional differential equations on unbounded interval, Gen. Lett. Math., 5 (2018), 111–117. https://doi.org/10.31559/glm2018.5.3.1 doi: 10.31559/glm2018.5.3.1
    [30] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 74 (2011), 5975–5986. https://doi.org/10.1016/j.na.2011.05.074 doi: 10.1016/j.na.2011.05.074
    [31] R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
    [32] R. Almeida, A. B. Malinowska, M.Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [33] Z. B. Bai, T. T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761–2767. https://doi.org/10.1016/j.amc.2009.09.017 doi: 10.1016/j.amc.2009.09.017
    [34] T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations, Florida: Academic Press, 1985.
    [35] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625.
    [36] C. Wang, R. Wang, S. Wang, C. Yang, Positive solution of singular boundary value problem for a nonlinear fractional differential equation, Bound. Value Probl. 2011 (2011), 297026. https://doi.org/10.1155/2011/297026 doi: 10.1155/2011/297026
    [37] S. Zhang, The existence of a positive solution for a fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. https://doi.org/10.1016/j.aml.2010.04.035 doi: 10.1016/j.aml.2010.04.035
    [38] D. R. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1980.
    [39] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
  • This article has been cited by:

    1. Hajar F. Ismael, Haci Mehmet Baskonus, Hasan Bulut, Wei Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with M-fractional, 2023, 55, 0306-8919, 10.1007/s11082-023-04581-7
    2. Nauman Raza, Abdel-Haleem Abdel-Aty, Traveling wave structures and analysis of bifurcation and chaos theory for Biswas–Milovic Model in conjunction with Kudryshov’s law of refractive index, 2023, 287, 00304026, 171085, 10.1016/j.ijleo.2023.171085
    3. Hakima Khudher Ahmed, Hajar Farhan Ismael, Optical soliton solutions for the nonlinear Schrödinger equation with higher-order dispersion arise in nonlinear optics, 2024, 99, 0031-8949, 105276, 10.1088/1402-4896/ad78c3
    4. Nirman Bhowmike, Zia Ur Rehman, Zarmeena Naz, Muhammad Zahid, Sultan Shoaib, Yasar Amin, Non-linear electromagnetic wave dynamics: Investigating periodic and quasi-periodic behavior in complex engineering systems, 2024, 184, 09600779, 114984, 10.1016/j.chaos.2024.114984
    5. Saumya Ranjan Jena, Itishree Sahu, A novel approach for numerical treatment of traveling wave solution of ion acoustic waves as a fractional nonlinear evolution equation on Shehu transform environment, 2023, 98, 0031-8949, 085231, 10.1088/1402-4896/ace6de
    6. Ri Zhang, Muhammad Shakeel, Nasser Bin Turki, Nehad Ali Shah, Sayed M Tag, Novel analytical technique for mathematical model representing communication signals: A new travelling wave solutions, 2023, 51, 22113797, 106576, 10.1016/j.rinp.2023.106576
    7. Exact Solutions of Beta-Fractional Fokas-Lenells Equation via Sine-Cosine Method, 2023, 16, 20710216, 10.14529/mmp230201
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1389) PDF downloads(91) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog