This paper is concerned with the existence of solutions to the Caputo fractional differential inclusion of $ 1 < \alpha < 2 $ with initial and impulsive boundary conditions. A novel existence result is presented based on the fixed-point theorem of Dhage for multi-valued operators with some assumptions. Finally, two examples are provided to explicate the applicability of the main result.
Citation: Ping Tong, Qunjiao Zhang. Existence of solutions to Caputo fractional differential inclusions of $ 1 < \alpha < 2 $ with initial and impulsive boundary conditions[J]. AIMS Mathematics, 2023, 8(9): 21856-21871. doi: 10.3934/math.20231114
This paper is concerned with the existence of solutions to the Caputo fractional differential inclusion of $ 1 < \alpha < 2 $ with initial and impulsive boundary conditions. A novel existence result is presented based on the fixed-point theorem of Dhage for multi-valued operators with some assumptions. Finally, two examples are provided to explicate the applicability of the main result.
[1] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027 |
[2] | G. Cooper, D. Cowan, The application of fractional calculus to potential field data, Explor. Geophys., 34 (2003), 51–56. https://doi.org/10.1071/EG03051 doi: 10.1071/EG03051 |
[3] | Z. E. A. Fellah, C. Depollier, M. Fellah, Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurements, Act. Acust. United Ac., 88 (2002), 34–39. |
[4] | C. J. Xu, D. Mu, Z. X. Liu, Y. C. Pang, M. X. Liao, C. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107043. https://doi.org/10.1016/j.cnsns.2022.107043 doi: 10.1016/j.cnsns.2022.107043 |
[5] | P. L. Li, Y. Li, R. Gao, C. J. Xu, Y. L. Shang, New exploration on bifurcation in fractional-order genetic regulatory networks incorporating both type delays, Eur. Phys. J. Plus, 137 (2022), 598. |
[6] | R. P. Agarwal, Y. Zhou, Y. Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010 |
[7] | K. Shah, B. Abdalla, T. Abdeljawad, R. Gul, Analysis of multipoint impulsive problem of fractional-order differential equations, Bound. Value Probl., 2023 (2023), 1. https://doi.org/10.1186/s13661-022-01688-w doi: 10.1186/s13661-022-01688-w |
[8] | Z. B. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72 (2010), 916–924. https://doi.org/10.1016/j.na.2009.07.033 doi: 10.1016/j.na.2009.07.033 |
[9] | B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091 |
[10] | B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480–487. https://doi.org/10.1016/j.amc.2010.05.080 doi: 10.1016/j.amc.2010.05.080 |
[11] | B. Ahmad, Existence of solutions for fractional differential equations of order $q\in (2, 3]$ with anti-periodic boundary conditions, J. Appl. Math. Comput., 34 (2010), 385–391. https://doi.org/10.1007/s12190-009-0328-4 doi: 10.1007/s12190-009-0328-4 |
[12] | S. Q. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl., 59 (2010), 1300–1309. https://doi.org/10.1016/j.camwa.2009.06.034 doi: 10.1016/j.camwa.2009.06.034 |
[13] | K. H. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725 |
[14] | K. Shah, N. Mlaiki, T. Abdeljawad, A. Ali, Using the measure of noncompactness to study a nonlinear impulsive Cauchy problem with two different kinds of delay, Fractals, 30 (2022), 2240218. https://doi.org/10.1142/S0218348X22402186 doi: 10.1142/S0218348X22402186 |
[15] | C. Cattani, H. M. Srivastava, X. J. Yang, Fractional dynamics, Walter de Gruyter GmbH Co KG, 2015. |
[16] | K. H. Zhao, Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations, AIMS Mathematics, 8 (2023), 13351–13367. http://doi.org/10.3934/math.2023676 doi: 10.3934/math.2023676 |
[17] | M. A. Dokuyucu, H. Dutta, A fractional order model for Ebola virus with the new Caputo fractional derivative without singular kernel, Chaos Solitons Fractals, 134 (2020), 109717. https://doi.org/10.1016/j.chaos.2020.109717 doi: 10.1016/j.chaos.2020.109717 |
[18] | K. H. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z |
[19] | G. T. Wang, L. H. Zhang, G. X. Song, Extremal solutions for the first order impulsive functional differential equations with upper and lower solutions in reversed order, J. Comput. Appl. Math., 235 (2010), 325–333. https://doi.org/10.1016/j.cam.2010.06.014 doi: 10.1016/j.cam.2010.06.014 |
[20] | B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 3 (2009), 251–258. https://doi.org/10.1016/j.nahs.2009.01.008 doi: 10.1016/j.nahs.2009.01.008 |
[21] | B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst., 4 (2010), 134–141. https://doi.org/10.1016/j.nahs.2009.09.002 doi: 10.1016/j.nahs.2009.09.002 |
[22] | K. Shah, T. Abdeljawad, A. Ali, M. A. Alqudah, Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative, Fractals, 30 (2022), 2240204. https://doi.org/10.1142/S0218348X22402046 doi: 10.1142/S0218348X22402046 |
[23] | Y. K. Chang, J. J. Nieto, Z. H. Zhao, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 593–599. https://doi.org/10.1016/j.nahs.2010.03.006 doi: 10.1016/j.nahs.2010.03.006 |
[24] | G. T. Wang, B. Ahmad, L. H. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., 74 (2011), 792–804. https://doi.org/10.1016/j.na.2010.09.030 doi: 10.1016/j.na.2010.09.030 |
[25] | S. Abbasbandy, J. J. Nieto, M. Alavi, Tuning of reachable set in one dimensional fuzzy differential inclusions, Chaos Solitons Fractals, 26 (2005), 1337–1341. https://doi.org/10.1016/j.chaos.2005.03.018 doi: 10.1016/j.chaos.2005.03.018 |
[26] | J. P. Aubin, H. Frankowska, Set-valued analysis, Springer Science & Business Media, 1990. |
[27] | M. Benchohora, S. K. Ntouyas, On first order differential inclusions with periodic boundary conditions, Math. Inequal. Appl., 8 (2005), 71–78. |
[28] | G. Grammel, Boundary value problems for semi-continuous delayed differential inclusions on Riemannian manifolds, Nonlinear Anal., 67 (2007), 3283–3286. https://doi.org/10.1016/j.na.2006.10.011 doi: 10.1016/j.na.2006.10.011 |
[29] | B. C. Dhage, Existence theorems for hyperbolic differential inclusions in Banach algebras, J. Math. Anal. Appl., 335 (2007), 225–242. https://doi.org/10.1016/j.jmaa.2007.01.045 doi: 10.1016/j.jmaa.2007.01.045 |
[30] | N. S. Papageorgiou, V. Staicu, The method of upper-lower solutions for nonlinear second order differential inclusions, Nonlinear Anal., 67 (2007), 708–726. https://doi.org/10.1016/j.na.2006.06.023 doi: 10.1016/j.na.2006.06.023 |
[31] | Y. K. Chang, J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49 (2009), 605–609. https://doi.org/10.1016/j.mcm.2008.03.014 doi: 10.1016/j.mcm.2008.03.014 |
[32] | I. Zabsonre, G. Bayili, K. Ezzinbi, Existence and controllability results for some impulsive partial functional differential inclusion, Afr. Mat., 24 (2013), 331–354. https://doi.org/10.1007/s13370-012-0063-0 doi: 10.1007/s13370-012-0063-0 |
[33] | E. A. Dads, M. Benchohra, S.Hamani, Impulsive fractional differential inclusions involving the Caputo fractional derivative, Fract. Calc. Appl. Anal., 12 (2009), 15–38. |
[34] | I. Benedetti, V. Obukhovskii, V. Taddei, On generalized boundary value problems for a class of fractional differential inclusions, Fract. Calc. Appl. Anal., 20 (2017), 1424–1446. https://doi.org/10.1515/fca-2017-0075 doi: 10.1515/fca-2017-0075 |
[35] | M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, On semilinear fractional order differential inclusions in Banach spaces, Fixed Point Theory, 18 (2017), 269–292. |
[36] | M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, Boundary value problems for semilinear differential inclusions of fractional order in a Banach space, Appl. Anal., 97 (2018), 571–591. https://doi.org/10.1080/00036811.2016.1277583 doi: 10.1080/00036811.2016.1277583 |
[37] | S. Hu, N. S. Papageogiou, Handbook of multivalued analysis, Dordrecht: Kluwer Academic Publishers, 1999. |