Research article

Existence of solutions to Caputo fractional differential inclusions of $ 1 < \alpha < 2 $ with initial and impulsive boundary conditions

  • Received: 08 May 2023 Revised: 23 June 2023 Accepted: 27 June 2023 Published: 10 July 2023
  • MSC : 34A08, 34C25

  • This paper is concerned with the existence of solutions to the Caputo fractional differential inclusion of $ 1 < \alpha < 2 $ with initial and impulsive boundary conditions. A novel existence result is presented based on the fixed-point theorem of Dhage for multi-valued operators with some assumptions. Finally, two examples are provided to explicate the applicability of the main result.

    Citation: Ping Tong, Qunjiao Zhang. Existence of solutions to Caputo fractional differential inclusions of $ 1 < \alpha < 2 $ with initial and impulsive boundary conditions[J]. AIMS Mathematics, 2023, 8(9): 21856-21871. doi: 10.3934/math.20231114

    Related Papers:

  • This paper is concerned with the existence of solutions to the Caputo fractional differential inclusion of $ 1 < \alpha < 2 $ with initial and impulsive boundary conditions. A novel existence result is presented based on the fixed-point theorem of Dhage for multi-valued operators with some assumptions. Finally, two examples are provided to explicate the applicability of the main result.



    加载中


    [1] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [2] G. Cooper, D. Cowan, The application of fractional calculus to potential field data, Explor. Geophys., 34 (2003), 51–56. https://doi.org/10.1071/EG03051 doi: 10.1071/EG03051
    [3] Z. E. A. Fellah, C. Depollier, M. Fellah, Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurements, Act. Acust. United Ac., 88 (2002), 34–39.
    [4] C. J. Xu, D. Mu, Z. X. Liu, Y. C. Pang, M. X. Liao, C. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107043. https://doi.org/10.1016/j.cnsns.2022.107043 doi: 10.1016/j.cnsns.2022.107043
    [5] P. L. Li, Y. Li, R. Gao, C. J. Xu, Y. L. Shang, New exploration on bifurcation in fractional-order genetic regulatory networks incorporating both type delays, Eur. Phys. J. Plus, 137 (2022), 598.
    [6] R. P. Agarwal, Y. Zhou, Y. Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
    [7] K. Shah, B. Abdalla, T. Abdeljawad, R. Gul, Analysis of multipoint impulsive problem of fractional-order differential equations, Bound. Value Probl., 2023 (2023), 1. https://doi.org/10.1186/s13661-022-01688-w doi: 10.1186/s13661-022-01688-w
    [8] Z. B. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72 (2010), 916–924. https://doi.org/10.1016/j.na.2009.07.033 doi: 10.1016/j.na.2009.07.033
    [9] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091
    [10] B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480–487. https://doi.org/10.1016/j.amc.2010.05.080 doi: 10.1016/j.amc.2010.05.080
    [11] B. Ahmad, Existence of solutions for fractional differential equations of order $q\in (2, 3]$ with anti-periodic boundary conditions, J. Appl. Math. Comput., 34 (2010), 385–391. https://doi.org/10.1007/s12190-009-0328-4 doi: 10.1007/s12190-009-0328-4
    [12] S. Q. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl., 59 (2010), 1300–1309. https://doi.org/10.1016/j.camwa.2009.06.034 doi: 10.1016/j.camwa.2009.06.034
    [13] K. H. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725
    [14] K. Shah, N. Mlaiki, T. Abdeljawad, A. Ali, Using the measure of noncompactness to study a nonlinear impulsive Cauchy problem with two different kinds of delay, Fractals, 30 (2022), 2240218. https://doi.org/10.1142/S0218348X22402186 doi: 10.1142/S0218348X22402186
    [15] C. Cattani, H. M. Srivastava, X. J. Yang, Fractional dynamics, Walter de Gruyter GmbH Co KG, 2015.
    [16] K. H. Zhao, Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations, AIMS Mathematics, 8 (2023), 13351–13367. http://doi.org/10.3934/math.2023676 doi: 10.3934/math.2023676
    [17] M. A. Dokuyucu, H. Dutta, A fractional order model for Ebola virus with the new Caputo fractional derivative without singular kernel, Chaos Solitons Fractals, 134 (2020), 109717. https://doi.org/10.1016/j.chaos.2020.109717 doi: 10.1016/j.chaos.2020.109717
    [18] K. H. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z
    [19] G. T. Wang, L. H. Zhang, G. X. Song, Extremal solutions for the first order impulsive functional differential equations with upper and lower solutions in reversed order, J. Comput. Appl. Math., 235 (2010), 325–333. https://doi.org/10.1016/j.cam.2010.06.014 doi: 10.1016/j.cam.2010.06.014
    [20] B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 3 (2009), 251–258. https://doi.org/10.1016/j.nahs.2009.01.008 doi: 10.1016/j.nahs.2009.01.008
    [21] B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst., 4 (2010), 134–141. https://doi.org/10.1016/j.nahs.2009.09.002 doi: 10.1016/j.nahs.2009.09.002
    [22] K. Shah, T. Abdeljawad, A. Ali, M. A. Alqudah, Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative, Fractals, 30 (2022), 2240204. https://doi.org/10.1142/S0218348X22402046 doi: 10.1142/S0218348X22402046
    [23] Y. K. Chang, J. J. Nieto, Z. H. Zhao, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 593–599. https://doi.org/10.1016/j.nahs.2010.03.006 doi: 10.1016/j.nahs.2010.03.006
    [24] G. T. Wang, B. Ahmad, L. H. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., 74 (2011), 792–804. https://doi.org/10.1016/j.na.2010.09.030 doi: 10.1016/j.na.2010.09.030
    [25] S. Abbasbandy, J. J. Nieto, M. Alavi, Tuning of reachable set in one dimensional fuzzy differential inclusions, Chaos Solitons Fractals, 26 (2005), 1337–1341. https://doi.org/10.1016/j.chaos.2005.03.018 doi: 10.1016/j.chaos.2005.03.018
    [26] J. P. Aubin, H. Frankowska, Set-valued analysis, Springer Science & Business Media, 1990.
    [27] M. Benchohora, S. K. Ntouyas, On first order differential inclusions with periodic boundary conditions, Math. Inequal. Appl., 8 (2005), 71–78.
    [28] G. Grammel, Boundary value problems for semi-continuous delayed differential inclusions on Riemannian manifolds, Nonlinear Anal., 67 (2007), 3283–3286. https://doi.org/10.1016/j.na.2006.10.011 doi: 10.1016/j.na.2006.10.011
    [29] B. C. Dhage, Existence theorems for hyperbolic differential inclusions in Banach algebras, J. Math. Anal. Appl., 335 (2007), 225–242. https://doi.org/10.1016/j.jmaa.2007.01.045 doi: 10.1016/j.jmaa.2007.01.045
    [30] N. S. Papageorgiou, V. Staicu, The method of upper-lower solutions for nonlinear second order differential inclusions, Nonlinear Anal., 67 (2007), 708–726. https://doi.org/10.1016/j.na.2006.06.023 doi: 10.1016/j.na.2006.06.023
    [31] Y. K. Chang, J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49 (2009), 605–609. https://doi.org/10.1016/j.mcm.2008.03.014 doi: 10.1016/j.mcm.2008.03.014
    [32] I. Zabsonre, G. Bayili, K. Ezzinbi, Existence and controllability results for some impulsive partial functional differential inclusion, Afr. Mat., 24 (2013), 331–354. https://doi.org/10.1007/s13370-012-0063-0 doi: 10.1007/s13370-012-0063-0
    [33] E. A. Dads, M. Benchohra, S.Hamani, Impulsive fractional differential inclusions involving the Caputo fractional derivative, Fract. Calc. Appl. Anal., 12 (2009), 15–38.
    [34] I. Benedetti, V. Obukhovskii, V. Taddei, On generalized boundary value problems for a class of fractional differential inclusions, Fract. Calc. Appl. Anal., 20 (2017), 1424–1446. https://doi.org/10.1515/fca-2017-0075 doi: 10.1515/fca-2017-0075
    [35] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, On semilinear fractional order differential inclusions in Banach spaces, Fixed Point Theory, 18 (2017), 269–292.
    [36] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. C. Yao, Boundary value problems for semilinear differential inclusions of fractional order in a Banach space, Appl. Anal., 97 (2018), 571–591. https://doi.org/10.1080/00036811.2016.1277583 doi: 10.1080/00036811.2016.1277583
    [37] S. Hu, N. S. Papageogiou, Handbook of multivalued analysis, Dordrecht: Kluwer Academic Publishers, 1999.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(873) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog