Research article Special Issues

Some results on the space of bounded second κ-variation functions

  • Received: 16 March 2023 Revised: 18 June 2023 Accepted: 25 June 2023 Published: 10 July 2023
  • MSC : 45-XX, 45DXX, 47-XX, 47H30

  • In this paper, we prove that if a globally Lipschitz non-autonomous superposition operator maps the space of functions of bounded second $ \kappa $-variation into itself then its generator function satisfies a Matkowski condition. We also provide conditions for the existence and uniqueness of solutions of the Hammerstein and Volterra equations in this space.

    Citation: Jurancy Ereú, Luz E. Marchan, Liliana Pérez, Henry Rojas. Some results on the space of bounded second κ-variation functions[J]. AIMS Mathematics, 2023, 8(9): 21872-21892. doi: 10.3934/math.20231115

    Related Papers:

  • In this paper, we prove that if a globally Lipschitz non-autonomous superposition operator maps the space of functions of bounded second $ \kappa $-variation into itself then its generator function satisfies a Matkowski condition. We also provide conditions for the existence and uniqueness of solutions of the Hammerstein and Volterra equations in this space.



    加载中


    [1] W. Azis, J. Guerrero, N. Merentes, Substitution operators in the spaces of functions of bounded variation $BV_{\alpha}^2(I)$, Bull. Korean Math. Soc., 52 (2015), 649–659. https://dx.doi.org/10.4134/BKMS.2015.52.2.649 doi: 10.4134/BKMS.2015.52.2.649
    [2] W. Azis, J. A. Guerrero, N. Merentes, On nonlinear integral equations in the space $ {{\rm \Phi }}BV(I)$, J. Fixed Point Theory Appl., 18 (2016), 351–366. https://dx.doi.org/10.1007/s11784-015-0280-x doi: 10.1007/s11784-015-0280-x
    [3] W. Azis, H. Leiva, N. Merentes, Solutions of Hammerstein equations in the space $BV(I_{a}^{b})$, Quaest. Math., 37 (2014), 359–370. https://dx.doi.org/10.2989/16073606.2014.894675 doi: 10.2989/16073606.2014.894675
    [4] R. E. Castillo, J. C. Ramos-Fenández, E. Trousselot, The Nemytskii operator in bounded $(p, \alpha)$-variation space, Analysis, 42 (2022), 185–193. https://doi.org/10.1515/anly-2022-1035 doi: 10.1515/anly-2022-1035
    [5] C. Corduneanu, Integral equations and applications, New York: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511569395
    [6] J. Ereú, L. López, N. Merentes, On second $\kappa$-variation, Comment. Math., 56 (2016), 209–224. https://doi.org/10.14708/cm.v56i2.1233 doi: 10.14708/cm.v56i2.1233
    [7] M. A. Fariborzi Araghi, G. K. Gelian, Numerical solution of nonlinear Hammerstein integral equations via Sinc collocation method based on double exponential transformation, Math. Sci., 7 (2013), 1–7.
    [8] C. Jordan, Sur la série de Fourier, C. R. Acad. Sci. Paris, 2 (1881), 228–230
    [9] B. Korenblum, An extension of the Nevanlinna theory, Acta Math., 135 (1975), 187–219. https://doi.org/10.1007/BF02392019 doi: 10.1007/BF02392019
    [10] M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, Birkhäuser, Berlin, 2009. http://dx.doi.org/10.1007/978-3-7643-8749-5
    [11] H. Leiva, J. Matute, N. Merentes, On the Hammerstein-Volterra equation in the space of the absolutely continuous functions, Int. J. Math. Anal., 6 (2012), 2977–2999.
    [12] J. Matkowski, Functional equation and Nemytskij operators, Funkc. Ekvacioj, 25 (1982), 127–132
    [13] O. Mejía, N. Merentes, J. L. Sánchez, M. Valera-López, The space of bounded $p(\cdot)$-variation in the sense Wiener-Korenblum with variable exponent, Adv. Pure Math., 6 (2016), 21–40. http://dx.doi.org/10.4236/apm.2016.61004 doi: 10.4236/apm.2016.61004
    [14] L. Pérez, J. Ereú, R. Gutierrez, Nonlinear equations of Hammerstein-Volterra type in the space of functions of bounded $\kappa$-variation in the sense of Korenblum, Nonlinear Stud., 28 (2021), 1161–1177.
    [15] A. M. Russell, C. J. F. Upton, A generalization of a theorem by F. Riesz, Anal. Math., 9 (1983), 69–77. https://doi.org/10.1007/BF01903991 doi: 10.1007/BF01903991
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(984) PDF downloads(58) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog