In this manuscript, we introduce a three dimension metric type spaces so called $ J $-metric spaces. We prove the existence and uniqueness of a fixed point for self mappings in such spaces with different types of contractions. We use our result to prove the existence and uniqueness of a solution of the following fractional differential equations such as
$ \mathcal{(P)}:\left\{ \begin{array}{ccl} D^{\lambda}x(t) & = & f(t,x(t)) = Fx(t) \;{\rm{ if }}\; t\in I_0 = (0,T] \\ x(0) & = & x(T) = r \\ \end{array} \right\} . $
Moreover, we present other applications to systems of linear equations and Fredholm type integral equation.
Citation: Nizar Souayah, Nabil Mlaiki, Salma Haque, Doaa Rizk, Amani S. Baazeem, Wasfi Shatanawi. A new type of three dimensional metric spaces with applications to fractional differential equations[J]. AIMS Mathematics, 2022, 7(10): 17802-17814. doi: 10.3934/math.2022980
In this manuscript, we introduce a three dimension metric type spaces so called $ J $-metric spaces. We prove the existence and uniqueness of a fixed point for self mappings in such spaces with different types of contractions. We use our result to prove the existence and uniqueness of a solution of the following fractional differential equations such as
$ \mathcal{(P)}:\left\{ \begin{array}{ccl} D^{\lambda}x(t) & = & f(t,x(t)) = Fx(t) \;{\rm{ if }}\; t\in I_0 = (0,T] \\ x(0) & = & x(T) = r \\ \end{array} \right\} . $
Moreover, we present other applications to systems of linear equations and Fredholm type integral equation.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | T. Kamran, M. Samreen, Q. UL Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[3] | P. Debnath, Z. D. Mitrović, H. M. Srivastava, Fixed points of some asymptotically regular multivalued mappings satisfying a Kannan-type condition, Axioms, 10 (2021), 24. https://doi.org/10.3390/axioms10010024 doi: 10.3390/axioms10010024 |
[4] | P. Debnath, H. M. Srivastava, Global optimization and common best proximity points for some multivalued contractive pairs of mappings, Axioms, 9 (2020), 102. https://doi.org/10.3390/axioms9030102 doi: 10.3390/axioms9030102 |
[5] | P. Debnath, B. S. Choudhury, M. Neog, Fixed set of set valued mappings with set valued domain in terms of start set on a metric space with a graph, Fixed Point Theory Appl., 2017 (2016), 5. https://doi.org/10.1186/s13663-017-0598-8 doi: 10.1186/s13663-017-0598-8 |
[6] | P. Debnath, Banach, Kannan, Chatterjea, and Reich-type contractive inequalities for multivalued mappings and their common fixed points, Math. Meth. Appl. Sci., 45 (2022), 1587–1596. https://doi.org/10.1002/mma.7875 doi: 10.1002/mma.7875 |
[7] | P. Debnath, Optimization through best proximity points for multivalued F-contractions, Miskolc Math. Notes, 22 (2021), 143–151. https://doi.org/10.18514/MMN.2021.3355 doi: 10.18514/MMN.2021.3355 |
[8] | P. Debnath, Set-valued Meir-Keeler, Geraghty and Edelstein type fixed point results in $b$-metric spaces, Rend. Circ. Mat. Palermo, Ⅱ. Ser., 70 (2021), 1389–1398. https://doi.org/10.1007/s12215-020-00561-y doi: 10.1007/s12215-020-00561-y |
[9] | P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory, Applications in Science, Engineering and Behavioural Sciences, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-4896-0 |
[10] | P. Debnath, H. M. Srivastava, P. Kumam, B. Hazarika, Fixed point theory and fractional calculus, Recent Advances and Applications, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-0668-8 |
[11] | S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in $S$-metric spaces, Mat. Vesnik, 64 (2012), 258–266. |
[12] | N. M. Mlaiki, $\alpha$-$\psi$-contractive mapping on $S$-metric space, Math. Sci. Lett., 4 (2015), 9–12. http://dx.doi.org/10.12785/msl/040103 doi: 10.12785/msl/040103 |
[13] | N. M. Mlaiki, Common fixed points in complex $S$-metric space, Adv. Fixed Point Theory, 4 (2014), 509–524. |
[14] | N. Souayah, N. Mlaiki, A fixed point theorem in $S_b$-metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139. http://dx.doi.org/10.22436/jmcs.016.02.01 doi: 10.22436/jmcs.016.02.01 |
[15] | N. Souayah, A fixed point in partial $S_b$-metric spaces, An. Şt. Univ. Ovidius Constanţa, 24 (2016), 351–362. http://dx.doi.org/10.1515/auom-2016-0062 doi: 10.1515/auom-2016-0062 |
[16] | N. Souayah, N. Mlaiki, A coincident point principle for two weakly compatible mappings in partial $S$-metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 2217–2223. |
[17] | H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (11), 4222–4229. https://doi.org/10.1016/j.camwa.2011.10.007 |
[18] | F. Gu, W. Shatanawi, Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces, J. Nonlinear Funct. Anal., 2019 (2019), 13. https://doi.org/10.23952/jnfa.2019.13 doi: 10.23952/jnfa.2019.13 |
[19] | S. Romaguera, P. Tirado, A characterization of quasi-metric completeness in terms of $\alpha$-$\Psi$-contractive mappings having fixed points, Mathematics, 8 (2020), 16. https://doi.org/10.3390/math8010016 doi: 10.3390/math8010016 |
[20] | S. Romaguera, On the correlation between Banach contraction principle and Caristi's fixed point theorem in $b$-metric spaces, Mathematics, 10 (2022), 136. https://doi.org/10.3390/math10010136 doi: 10.3390/math10010136 |
[21] | N. Savanovi, I. D. Arandelovi, Z. D. Mitrovi, The results on coincidence and common fixed points for a new type multivalued mappings in $b$-metric spaces, Mathematics, 10 (2022), 856. https://doi.org/10.3390/math10060856 doi: 10.3390/math10060856 |
[22] | H. Huang, V. Todorčević, S. Radenović, Remarks on recent results for generalized $F$-contractions, Mathematics, 10 (2022), 768. https://doi.org/10.3390/math10050768 doi: 10.3390/math10050768 |
[23] | I. Beg, K. Roy, M. Saha, $S^{JS}$-metric and topological spaces, J. Math. Extension, 15 (2021), 1–16. https://doi.org/10.30495/JME.2021.1589 doi: 10.30495/JME.2021.1589 |
[24] | K. Roy, M. Saha, I. Beg, Fixed point of contractive mappings of integral type over an $S^{JS}$-metric space, Tamkang J. Math., 52 (2021), 267–280. |
[25] | Z. Jia, X. Liu, Stability in measure for uncertain fractional differential equations with jumps, U.P.B. Sci. Bull., Ser. A, 84 (2022), 145–154. |