The main motive of this work is to introduce a numerical investigation for the one and two-dimensional (1D/2D) Chaplygin gas model. Namely, we developed the non homogeneous Riemann solver (NHRS) method to solve these models. After discussing the Chaplygin gas models and the numerical scheme, various 1D and 2D test problems are introduced. In order to complete the numerical investigation in a completely unified way, Rusanov scheme, modified Lax-Friedrichs and analytical solution are compared with NHRS scheme in 1D case. The acquired results clarify the high resolution of the NHRS technique. The NHRS technique is efficacious and robust. Finally, our study displays that the NHRS scheme is a very powerful tool to solve many other models arising in applied science.
Citation: Kamel Mohamed, Hanan A. Alkhidhr, Mahmoud A. E. Abdelrahman. The NHRS scheme for the Chaplygin gas model in one and two dimensions[J]. AIMS Mathematics, 2022, 7(10): 17785-17801. doi: 10.3934/math.2022979
The main motive of this work is to introduce a numerical investigation for the one and two-dimensional (1D/2D) Chaplygin gas model. Namely, we developed the non homogeneous Riemann solver (NHRS) method to solve these models. After discussing the Chaplygin gas models and the numerical scheme, various 1D and 2D test problems are introduced. In order to complete the numerical investigation in a completely unified way, Rusanov scheme, modified Lax-Friedrichs and analytical solution are compared with NHRS scheme in 1D case. The acquired results clarify the high resolution of the NHRS technique. The NHRS technique is efficacious and robust. Finally, our study displays that the NHRS scheme is a very powerful tool to solve many other models arising in applied science.
[1] | J. Smoller, Shock waves and reaction-diffusion equations, Springer, 1 Ed., 1994. |
[2] | E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer, 1999. |
[3] | M. A. E. Abdelrahman, Cone-grid scheme for solving hyperbolic systems of conservation laws and one application, Comp. Appl. Math., 37 (2018), 3503–3513. https://doi.org/10.1007/s40314-017-0527-9 doi: 10.1007/s40314-017-0527-9 |
[4] | M. A. E. Abdelrahman, Global solutions for the ultra-relativistic Euler equations, Nonlinear Anal., 155 (2017), 140–162. https://doi.org/10.1016/j.na.2017.01.014 doi: 10.1016/j.na.2017.01.014 |
[5] | M. A. E. Abdelrahman, On the shallow water equations, Z. Naturforsch. A, 72 (2017), 873–879. https://doi.org/10.1515/zna-2017-0146 doi: 10.1515/zna-2017-0146 |
[6] | S. Chaplygin, On gas jets, Scientific Memoirs, Moscow University Mathematic Physics, Vol. 21, 1904. |
[7] | M. R. Setare, Holographic Chaplygin gas model, Phys. Lett. B, 648 (2007), 329–332. https://doi.org/10.1016/j.physletb.2007.03.025 doi: 10.1016/j.physletb.2007.03.025 |
[8] | Y. Brenier, Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations, J. Math. Fluid Mech., 7 (2005), S326–S331. https://doi.org/10.1007/s00021-005-0162-x doi: 10.1007/s00021-005-0162-x |
[9] | L. H. Guo, W. C. Sheng, T. Zhang, The two-dimensional Riemann problelm for isentropic Chaplygin gas dynamic system, Comm. Pure Appl. Anal., 9 (2010), 431–458. http://dx.doi.org/10.3934/cpaa.2010.9.431 doi: 10.3934/cpaa.2010.9.431 |
[10] | Y. Hu, J. Q. Li, W. C. Sheng, Degenerate Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations, Z. Angew. Math. Phys., 63 (2012), 1021–1046. https://doi.org/10.1007/s00033-012-0203-2 doi: 10.1007/s00033-012-0203-2 |
[11] | J. Q. Li, Y. X. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations, Commun. Math. Phys., 296 (2010), 303–321. https://doi.org/10.1007/s00220-010-1019-6 doi: 10.1007/s00220-010-1019-6 |
[12] | S. Chen, A. Qu, Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146–2178. https://doi.org/10.1137/110838091 doi: 10.1137/110838091 |
[13] | G. Lai, W. C. Sheng, Y. X. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions, Discrete Contin. Dyn. Syst., 31 (2011), 489–523. https://doi.org/10.3934/dcds.2011.31.489 doi: 10.3934/dcds.2011.31.489 |
[14] | W. C. Sheng, T. Zhang, The Riemann problem for transportation equations in gas dynamics, Memoirs of the American Mathematical Society, Vol. 137, 1999. https://doi.org/10.1090/memo/0654 |
[15] | F. B. Li, W. Xiao, Interaction of four rarefaction waves in the bi-symmetric class of the pressure gradient system, J. Differ. Equations, 252 (2012), 3920–3952. https://doi.org/10.1016/j.jde.2011.11.010 doi: 10.1016/j.jde.2011.11.010 |
[16] | K. Song, Y. X. Zheng, Semi-hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst., 24 (2009), 1365–1380. https://doi.org/10.3934/dcds.2009.24.1365 doi: 10.3934/dcds.2009.24.1365 |
[17] | G. Q. Chen, X. M. Deng, W. Xiang, Shock diffraction by convex cornered wedges for the nonlinear wave system, Arch. Rational Mech. Anal., 211 (2014), 61–112. https://doi.org/10.1007/s00205-013-0681-1 doi: 10.1007/s00205-013-0681-1 |
[18] | K. Mohamed, Simulation numérique en volume finis, de problémes d'écoulements multidimensionnels raides, par un schéma de flux á deux pas, Dissertation, University of Paris XIII, 2005. |
[19] | K. Mohamed, M. Seaid, M. Zahri, A finite volume method for scalar conservation laws with stochastic time-space dependent flux function, J. Comput. Appl. Math., 237 (2013), 614–632. https://doi.org/10.1016/j.cam.2012.07.014 doi: 10.1016/j.cam.2012.07.014 |
[20] | F. Benkhaldoun, K. Mohamed, M. Seaid, A Generalized Rusanov method for Saint-Venant Equations with Variable Horizontal Density, In: J. Fořt, J. Fürst, J. Halama, R. Herbin, F. Hubert, Finite volumes for complex applications Ⅵ problems & perspectives, Springer Proceedings in Mathematics, Springer, Berlin, Heidelberg, 4 (2011), 89–96. https://doi.org/10.1007/978-3-642-20671-9_10 |
[21] | K. Mohamed, F. Benkhaldoun, A modified Rusanov scheme for shallow water equations with topography and two phase flows, Eur. Phys. J. Plus, 131 (2016), 207. https://doi.org/10.1140/epjp/i2016-16207-3 doi: 10.1140/epjp/i2016-16207-3 |
[22] | K. Mohamed, A finite volume method for numerical simulation of shallow water models with porosity, Comput. Fluids, 104 (2014), 9–19. https://doi.org/10.1016/j.compfluid.2014.07.020 doi: 10.1016/j.compfluid.2014.07.020 |
[23] | K. Mohamed, A. R. Seadawy, Finite volume scheme for numerical simulation of the sediment transport model, Int. J. Mod. Phys. B, 33 (2019), 1950283. https://doi.org/10.1142/S0217979219502837 doi: 10.1142/S0217979219502837 |
[24] | K. Mohamed, M. A. E. Abdelrahman, The modified Rusanov scheme for solving the ultra-relativistic Euler equations, Eur. J. Mech. B/Fluids, 90 (2021), 89–98. https://doi.org/10.1016/j.euromechflu.2021.07.014 doi: 10.1016/j.euromechflu.2021.07.014 |
[25] | S. Mungkasi, S. G. Roberts, A smoothness indicator for numerical solutions to the Ripa model, J. Phys. Conf. Ser., 693 (2016), 012011. https://doi.org/10.1088/1742-6596/693/1/012011 doi: 10.1088/1742-6596/693/1/012011 |
[26] | S. J. Sherwin, L. Formaggia, J. Peiro, V. Franke, Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int. J. Numer. Methods Fluids, 43 (2003), 673–700. https://doi.org/10.1002/fld.543 doi: 10.1002/fld.543 |
[27] | P. Gupta, R. K. Chaturvedi, L. P. Singh, The generalized Riemann problem for the Chaplygin gas equation, Eur. J. Mech. B/Fluids, 82 (2020), 61–65. https://doi.org/10.1016/j.euromechflu.2020.03.001 doi: 10.1016/j.euromechflu.2020.03.001 |
[28] | R. J. LeVeque, Numerical methods for conservation laws, Birkhäuser Verlag Basel, Switzerland, 1992. |
[29] | V. Rusanov, Caculation of interaction of non-steady shock waves with obstacles, National Research Council of Canada, Ottawa, 1961,267–279. |
[30] | P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21 (1984), 995–1011. https://doi.org/10.1137/0721062 doi: 10.1137/0721062 |
[31] | G. Wang, B. Chen, Y. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states, J. Math. Anal. Appl., 393 (2012), 544–562. https://doi.org/10.1016/j.jmaa.2012.03.017 doi: 10.1016/j.jmaa.2012.03.017 |