Research article

Existence of a solution of fractional differential equations using the fixed point technique in extended $ b $-metric spaces

  • Received: 11 May 2021 Accepted: 22 September 2021 Published: 13 October 2021
  • MSC : 46T99, 47H10, 54H25

  • The purpose of the present paper is to prove some fixed point results for cyclic-type operators in extended $ b $-metric spaces. The considered operators are generalized $ \varphi $-contractions and $ \alpha $-$ \varphi $ contractions. The last section is devoted to applications to integral type equations and nonlinear fractional differential equations using the Atangana-Bǎleanu fractional operator.

    Citation: Monica-Felicia Bota, Liliana Guran. Existence of a solution of fractional differential equations using the fixed point technique in extended $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(1): 518-535. doi: 10.3934/math.2022033

    Related Papers:

  • The purpose of the present paper is to prove some fixed point results for cyclic-type operators in extended $ b $-metric spaces. The considered operators are generalized $ \varphi $-contractions and $ \alpha $-$ \varphi $ contractions. The last section is devoted to applications to integral type equations and nonlinear fractional differential equations using the Atangana-Bǎleanu fractional operator.



    加载中


    [1] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [2] B. Alqahtani, A. Fulga, F. Jarad, E. Karapinar, Nonlinear F-contractions on $b$-metric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler kernel, Chaos, Soliton. Fract., 128 (2019), 349–354. doi: 10.1016/j.chaos.2019.08.002. doi: 10.1016/j.chaos.2019.08.002
    [3] H. Aydi, E. Karapinar, B. Samet, Fixed point theorems for various classes of cyclic mappings, J. Appl. Math., 2012 (2012), 867216. doi: 10.1155/2012/867216. doi: 10.1155/2012/867216
    [4] H. Aydi, M. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\phi$-contractions on $b$-metric spaces, Fixed Point Theor., 13 (2012), 337–346.
    [5] M. Abbas, V. Parvaneh, A. Razani, Periodic points of $T$-Ciric generalized contraction mappings in ordered metric spaces, Georgian Math. J., 19 (2012), 597–610. doi: 10.1515/gmj-2012-0036. doi: 10.1515/gmj-2012-0036
    [6] T. Abdeljawad, R. P. Agarwal, E. Karapinar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686. doi: 10.3390/sym11050686
    [7] T. Abdeljawad, D. Baleanu, Integration by parts and its application of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. doi: 10.22436/jnsa.010.03.20. doi: 10.22436/jnsa.010.03.20
    [8] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
    [9] M. Bota, A. Petrușel, Ulam-Hyers stability for operatorial equations, An. Stiint. U. Al. I. Mat., 57 (2011), 65–74. doi: 10.2478/v10157-011-0003-6. doi: 10.2478/v10157-011-0003-6
    [10] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181. doi: 10.4064/fm-3-1-133-181
    [11] V. Berinde, Generalized contractions in quasimetric spaces, Semin. Fixed Point Theory, 3 (1993), 3–9.
    [12] V. Berinde, Contracţii generalizate și aplicaţii, Baia Mare: Editura Cub Press 22, 1997.
    [13] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11.
    [14] S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
    [15] T. Došenović, Z. Kadelburg, Z. D. Mitrović, S. Radenović, New fixed point results in $bv(s)$-metric Spaces, Math. Slovaca, 70 (2020), 441–452. doi: 10.1515/ms-2017-0362. doi: 10.1515/ms-2017-0362
    [16] A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. doi: 10.1016/j.jmaa.2005.10.081. doi: 10.1016/j.jmaa.2005.10.081
    [17] H. A. Hammad, H. Aydi, N. Mlaiki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 97. doi: 10.1186/s13662-021-03255-6. doi: 10.1186/s13662-021-03255-6
    [18] H.A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. doi: 10.1155/2021/5730853. doi: 10.1155/2021/5730853
    [19] H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled fractional differential equations, AIMS Mathematics, 6 (2021), 2330–2343. doi: 10.3934/math.2021141. doi: 10.3934/math.2021141
    [20] H. Huang, Y. M. Singh, M. S. Khan, S. Radenović, Rational type contractions in extended b-metric spaces, Symmetry, 13 (2021), 614. doi: 10.3390/sym13040614. doi: 10.3390/sym13040614
    [21] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [22] E. Karapinar, P. S. Kumari, D. Lateef, A new approach to the solution of the fredholm integral equation via a fixed point on extended b-metric spaces, Symmetry, 10 (2018), 512. doi: 10.3390/sym10100512. doi: 10.3390/sym10100512
    [23] T. Kamran, M. Samreen, Q. U. L Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. doi:10.3390/math5020019. doi: 10.3390/math5020019
    [24] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theor., 4 (2003), 79–89.
    [25] A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in $b$-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 363–377. doi: 10.22436/jnsa.008.04.09. doi: 10.22436/jnsa.008.04.09
    [26] A. Lukacs, S. Kajanto, Fixed point theorems for various type of $F$-contractions in complete $b$-metric spaces, Fixed Point Theor., 19 (2018), 321–334.
    [27] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman Publishing, 1985.
    [28] V. L. Lazǎr, Ulam-Hyers stability for partial differential inclusions, Electron. J. Qual. Theo., 21 (2012), 1–19.
    [29] I. Gonoskov, Cyclic operator decomposition for solving the differential equations, Adv. Pure Math., 3 (2013), 178–182. doi: 10.4236/apm.2013.31A025. doi: 10.4236/apm.2013.31A025
    [30] L. Guran, M. F. Bota, Existence of the solutions of nonlinear fractional differential equations using the fixed point technique in extended $b$-metric spaces, Symmetry, 13 (2021), 158. doi: 10.3390/sym13020158. doi: 10.3390/sym13020158
    [31] R. George, K. P. Reshma, A. Padmavati, Fixed point theorems for cyclic contractions in $b$-metric spaces, J. Nonlinear Funct. Anal., 2015 (2015), 5.
    [32] A. Magdas, A Perov type theorem for cyclic contractions and applications to systems of integral equations, Miskolc Math. Notes, 17 (2017), 931–939.
    [33] J. Matkowski, Integrable solutions of functional equations, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1975.
    [34] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. doi: 10.1007/s11784-016-0400-2. doi: 10.1007/s11784-016-0400-2
    [35] S. K. Mohanta, Coincience points and common fixed points for expansive type mappings in $b$-metric spaces, Iran J. Math. Sci. Info., 11 (2016), 101–113. doi: 10.7508/ijmsi.2016.01.009. doi: 10.7508/ijmsi.2016.01.009
    [36] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan contractions in $b$-metric spaces, J. Inequal. Appl., 2014 (2014), 46. doi: 10.1186/1029-242X-2014-46. doi: 10.1186/1029-242X-2014-46
    [37] H. K. Nashine, Cyclic generalized $\Psi$-weakly contractive mappings and fixed point results with applications to integral equations, Nonlinear Anal. Theor., 75 (2012), 6160–6169. doi: 10.1016/j.na.2012.06.021. doi: 10.1016/j.na.2012.06.021
    [38] A. Petrușel, G. Petrușel, Fixed points, coupled fixed points and best proximity points for cyclic operators, J. Nonlinear Convex A., 20 (2019), 1637–1646.
    [39] T. P. Petru, A. Petrușel, J. C. Yao, Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwan. J. Math., 15 (2011), 2195–2212. doi: 10.11650/twjm/1500406430. doi: 10.11650/twjm/1500406430
    [40] V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized wardowski type fixed point theorems via $\alpha$-admissible $FG$-contractions in $b$-metric spaces, Acta Math. Sci., 36 (2016), 1445–1456. doi: 10.1016/S0252-9602(16)30080-7. doi: 10.1016/S0252-9602(16)30080-7
    [41] I. A. Rus, Generalized contractions and applications, Cluj University Press, 2001.
    [42] I. A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theor., 9 (2008), 541–559.
    [43] I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theor., 10 (2009), 305–320.
    [44] S. Radenović, A note on fixed point theory for cyclic $\varphi$-contractions, Fixed Point Theory Appl., 2015 (2015), 189. doi: 10.1186/s13663-015-0437-8. doi: 10.1186/s13663-015-0437-8
    [45] S. Radenović, Classical fixed point results in $0$-complete partial metric spaces via cyclic-type extension, Allahabad Math. Soc., 31 (2016), 39–55.
    [46] S. Radenović, Some remarks on mappings satisfying cyclical contractive conditions, Afr. Mat., 27 (2016), 291–295. doi: 10.1007/s13370-015-0339-2. doi: 10.1007/s13370-015-0339-2
    [47] S. Radenović, S. Chandok, W. Shatanawi, Some cyclic fixed point results for contractive mappings, Univ. Thought Publ. Nat. Sci., 6 (2016), 38–40. doi: 10.5937/univtho6-11813. doi: 10.5937/univtho6-11813
    [48] S. Radenović, T. Došenović, T. Lampert, Z. Golubovíć, A note on some recent fixed point results for cyclic contractions in $b$-metric spaces and an application to integral equations, Appl. Math. Comput., 273 (2016), 155–164. doi: 10.1016/j.amc.2015.09.089. doi: 10.1016/j.amc.2015.09.089
    [49] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings. Nonlinear Anal. Theor., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014. doi: 10.1016/j.na.2011.10.014
    [50] M. Samreen, T. Kamran, M. Postolache, Extended b-metric space, extended b-comparison function and nonlinear contractions, U. P. B. Sci. Bull. Series A, 80 (2018), 21–28.
    [51] S. G. Samko, A. Kilbas, O. Marichev, Fractional integral and derivative: Theory and applications, Gordon and Breach, 1993.
    [52] Y. Shang, A combinatorial necessary and sufficient condition for cluster consensus, Neurocomputing, 216 (2016), 611–616. doi: 10.1016/j.neucom.2016.08.025. doi: 10.1016/j.neucom.2016.08.025
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2575) PDF downloads(129) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog