Research article

Generalized perimantanes diamondoid structure and their edge-based metric dimensions

  • Received: 24 February 2022 Revised: 28 March 2022 Accepted: 06 April 2022 Published: 18 April 2022
  • MSC : 05C09, 05C12, 05C92

  • Due to its superlative physical qualities and its beauty, the diamond is a renowned structure. While the green-colored perimantanes diamondoid is one of a higher diamond structure. Motivated by the structure's applications and usage, we look into the edge-based metric parameters of this structure. In this draft, we have discussed edge metric dimension and their generalizations for the generalized perimantanes diamondoid structure and proved that each parameter depends on the copies of original or base perimantanes diamondoid structure and changes with the parameter $ {\lambda} $ or its number of copies.

    Citation: Al-Nashri Al-Hossain Ahmad, Ali Ahmad. Generalized perimantanes diamondoid structure and their edge-based metric dimensions[J]. AIMS Mathematics, 2022, 7(7): 11718-11731. doi: 10.3934/math.2022653

    Related Papers:

  • Due to its superlative physical qualities and its beauty, the diamond is a renowned structure. While the green-colored perimantanes diamondoid is one of a higher diamond structure. Motivated by the structure's applications and usage, we look into the edge-based metric parameters of this structure. In this draft, we have discussed edge metric dimension and their generalizations for the generalized perimantanes diamondoid structure and proved that each parameter depends on the copies of original or base perimantanes diamondoid structure and changes with the parameter $ {\lambda} $ or its number of copies.



    加载中


    [1] M. Diudea, C. Nagy, Diamond and related nanostructures, Netherlands: Springer, 2013. http://dx.doi.org/10.1007/978-94-007-6371-5
    [2] P. Schreiner, A. Fokin, H. Reisenauer, B. Tkachenko, E. Vass, M. Olmstead, et al., [123] tetramantane: parent of a new family of $\sigma$-helicenes, J. Am. Chem. Soc., 131 (2009), 11292–11293. http://dx.doi.org/10.1021/ja904527g doi: 10.1021/ja904527g
    [3] M. Imran, M. Siddiqui, R. Naeem, On the metric dimension of generalized petersen multigraphs, IEEE Access, 6 (2018), 74328–74338. http://dx.doi.org/10.1109/access.2018.2883556 doi: 10.1109/access.2018.2883556
    [4] C. Wei, M. Nadeem, H. Siddiqui, M. Azeem, J. Liu, A. Khalil, On partition dimension of some cycle-related graphs, Math. Probl. Eng., 2021 (2021), 4046909. http://dx.doi.org/10.1155/2021/4046909 doi: 10.1155/2021/4046909
    [5] M. Nadeem, M. Azeem, I. Farman, Comparative study of topological indices for capped and uncapped carbon nanotubes, Polycycl. Aromat. Comp., in press. http://dx.doi.org/10.1080/10406638.2021.1903952
    [6] M. Nadeem, M. Azeem, H. Siddiqui, Comparative study of Zagreb indices for capped, semi-capped, and uncapped carbon nanotubes, Polycycl. Aromat. Comp., in press. http://dx.doi.org/10.1080/10406638.2021.1890625
    [7] M. Nadeem, M. Imran, H. Siddiqui, M. Azeem, A. Khalil, Y. Ali, Topological aspects of metal-organic structure with the help of underlying networks, Arab. J. Chem., 14 (2021), 103157. http://dx.doi.org/10.1016/j.arabjc.2021.103157 doi: 10.1016/j.arabjc.2021.103157
    [8] P. Slater, Leaves of trees, Proceedings of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 1975,549–559.
    [9] F. Harary, R. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195.
    [10] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequ. Math., 59 (2000), 45–54. http://dx.doi.org/10.1007/PL00000127 doi: 10.1007/PL00000127
    [11] G. Chartrand, L. Eroh, M. Johnson, O. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. http://dx.doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0
    [12] A. Kelenc, N. Tratnik, I. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discrete Appl. Math., 251 (2018), 204–220. http://dx.doi.org/10.1016/j.dam.2018.05.052 doi: 10.1016/j.dam.2018.05.052
    [13] X. Liu, M. Ahsan, Z. Zahid, S. Ren, Fault-tolerant edge metric dimension of certain families of graphs, AIMS Mathematics, 6 (2021), 1140–1152. http://dx.doi.org/10.3934/math.2021069 doi: 10.3934/math.2021069
    [14] A. Kelenc, D. Kuziak, A. Taranenko, I. Yero, Mixed metric dimension of graphs, Appl. Math. Comput., 314 (2017), 429–438. http://dx.doi.org/10.1016/j.amc.2017.07.027 doi: 10.1016/j.amc.2017.07.027
    [15] A. Ahmad, A. Koam, M. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2022), 101587. http://dx.doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014
    [16] A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 191–406. http://dx.doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070
    [17] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. http://dx.doi.org/10.1016/0166-218X(95)00106-2 doi: 10.1016/0166-218X(95)00106-2
    [18] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. http://dx.doi.org/10.1080/10543409308835060 doi: 10.1080/10543409308835060
    [19] M. Hauptmann, R. Schmied, C. Viehmann, Approximation complexity of metric dimension problem, Journal of Discrete Algorithms, 14 (2012), 214–222. http://dx.doi.org/10.1016/j.jda.2011.12.010 doi: 10.1016/j.jda.2011.12.010
    [20] M. Garey, D. Johnson, Computers and intractability: a guide to the theory of NP-completeness, New York: W. H. Freeman & Co., 1990.
    [21] M. Johnson, Browsable structure-activity datasets, In: Advances in molecular similarity, London: JAI Press Connecticut, 1998, 153–170.
    [22] H. Raza, S. Hayat, X. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. http://dx.doi.org/10.1007/s12190-018-01225-y doi: 10.1007/s12190-018-01225-y
    [23] Z. Ahmad, M. Chaudhary, A. Baig, M. Zahid, Fault-tolerant metric dimension of P(n, 2)$\odot$K1 graph, J. Discrete Math. Sci. C., 24 (2021), 647–656. http://dx.doi.org/10.1080/09720529.2021.1899209 doi: 10.1080/09720529.2021.1899209
    [24] J. Liu, Y. Bao, W. Zheng, S. Hayat, Network coherence analysis on a family of nested weighted n-polygon networks, Fractals, 29 (2021), 215260. http://dx.doi.org/10.1142/s0218348x21502601 doi: 10.1142/s0218348x21502601
    [25] M. Javaid, M. Aslam, J. Liu, On the upper bounds of fractional metric dimension of symmetric networks, J. Math., 2021 (2021), 8417127. http://dx.doi.org/10.1155/2021/8417127 doi: 10.1155/2021/8417127
    [26] D. Vietz, E. Wanke, The fault-tolerant metric dimension of cographs, In: Fundamentals of computation theory, Cham: Springer, 2019,350–364. http://dx.doi.org/10.1007/978-3-030-25027-0_24
    [27] S. Sharma, V. Bhat, Fault-tolerant metric dimension of two-fold heptagonal-nonagonal circular ladder, Discret. Math. Algorit., 14 (2022), 2150132. http://dx.doi.org/10.1142/s1793830921501329 doi: 10.1142/s1793830921501329
    [28] L. Saha, Fault-tolerant metric dimension of cube of paths, J. Phys.: Conf. Ser., 1714 (2021), 012029. http://dx.doi.org/10.1088/1742-6596/1714/1/012029 doi: 10.1088/1742-6596/1714/1/012029
    [29] Y. Huang, B. Hou, W. Liu, L. Wu, S. Rainwater, S. Gao, On approximation algorithm for the edge metric dimension problem, Theor. Comput. Sci., 853 (2021) 2–6. http://dx.doi.org/10.1016/j.tcs.2020.05.005 doi: 10.1016/j.tcs.2020.05.005
    [30] M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M. Sindhu, M. Umar, Computing the edge metric dimension of convex polytopes related graphs, J. Math. Comput. Sci.-JM, 22 (2020), 174–188. http://dx.doi.org/10.22436/jmcs.022.02.08 doi: 10.22436/jmcs.022.02.08
    [31] A. Koam, A. Ahmad, Barycentric subdivision of Cayley graphs with constant edge metric dimension, IEEE Access, 8 (2020), 80624–80628. http://dx.doi.org/10.1109/ACCESS.2020.2990109 doi: 10.1109/ACCESS.2020.2990109
    [32] Z. Raza, M. Bataineh, The comparative analysis of metric edge metric dimension of some subdivisions of the wheel graph, Asian-Eur. J. Math., 14 (2021), 2150062. http://dx.doi.org/10.1142/S1793557121500625 doi: 10.1142/S1793557121500625
    [33] J. Liu, Z. Zahid, R. Nasir, W. Nazeer, Edge version of metric dimension anddoubly resolving sets of the necklace graph, Mathematics, 6 (2018), 243. http://dx.doi.org/10.3390/math6110243 doi: 10.3390/math6110243
    [34] T. Iqbal, M. Azhar, S. Bokhary, The k-size edge metric dimension of graphs, J. Math., 2020 (2020), 1023175. http://dx.doi.org/10.1155/2020/1023175 doi: 10.1155/2020/1023175
    [35] M. Wei, J. Yue, X. Zhu, On the edge metric dimension of graphs, AIMS Mathematics, 5 (2020), 4459–4465. http://dx.doi.org/10.3934/math.2020286 doi: 10.3934/math.2020286
    [36] B. Deng. M. Nadeem, M. Azeem, On the edge metric dimension of different families of Möbius networks, Math. Probl. Eng., 2021 (2021), 6623208. http://dx.doi.org/10.1155/2021/6623208 doi: 10.1155/2021/6623208
    [37] A. Koam, A. Ahmad, M. Ibrahim, M. Azeem, Edge metric fault-tolerant edge metric dimension of hollow coronoid, Mathematics, 9 (2021), 1405. http://dx.doi.org/10.3390/math9121405 doi: 10.3390/math9121405
    [38] M. Bataineh, N. Siddiqui, Z. Raza, Edge metric dimension of k-multiwheel graph, Rocky Mountain J. Math., 50 (2020), 1175–1180. http://dx.doi.org/10.1216/rmj.2020.50.1175 doi: 10.1216/rmj.2020.50.1175
    [39] H. Raza, Y. Ji, Computing the mixed metric dimension of a generalized petersengraph $P(n, 2)$, Front. Phys., 8 (2020), 211. http://dx.doi.org/10.3389/fphy.2020.00211 doi: 10.3389/fphy.2020.00211
    [40] H. Raza, J. Liu, S. Qu, On mixed metric dimension of rotationally symmetric graphs, IEEE Access, 8 (2019), 11560–11569. http://dx.doi.org/10.1109/ACCESS.2019.2961191 doi: 10.1109/ACCESS.2019.2961191
    [41] H. Raza, Y. Ji, S. Qu, On mixed metric dimension of some path related graphs, IEEE Access, 8 (2020), 188146–188153. http://dx.doi.org/10.1109/ACCESS.2020.3030713 doi: 10.1109/ACCESS.2020.3030713
    [42] M. Azeem, M. Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, Eur. Phys. J. Plus, 136 (2021), 395. http://dx.doi.org/10.1140/epjp/s13360-021-01399-8 doi: 10.1140/epjp/s13360-021-01399-8
    [43] A. Ahmad, S. Husain, M. Azeem, K. Elahi, M. Siddiqui, Computation of edge resolvability of benzenoid tripod structure, J. Math., 2021 (2021), 9336540. http://dx.doi.org/10.1155/2021/9336540 doi: 10.1155/2021/9336540
    [44] M. Imran, A. Ahmad, M. Azeem, K. Elahi, Metric-based resolvability of quartz structure, Comput. Mater. Con., 71 (2022), 2053–2071. http://dx.doi.org/10.32604/cmc.2022.022064 doi: 10.32604/cmc.2022.022064
    [45] H. Siddiqui, M. Imran, Computing the metric and partition dimension of H-Naphtalenic and VC5C7 nanotubes, J. Optoelectron. Adv. M., 17 (2015), 790–794.
    [46] H. Siddiqui, M. Imran, Computing metric and partition dimension of 2-dimensional lattices of certain nanotubes, J. Comput. Theor. Nanos., 11 (2014), 2419–2423.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1351) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog