An unusual alternating reflection method on conics is presented to evaluate inverse trigonometric and hyperbolic functions.
Citation: François Dubeau. Alternating reflection method on conics leading to inverse trigonometric and hyperbolic functions[J]. AIMS Mathematics, 2022, 7(7): 11708-11717. doi: 10.3934/math.2022652
An unusual alternating reflection method on conics is presented to evaluate inverse trigonometric and hyperbolic functions.
[1] | G. Galperin, Playing pool with $\pi$ (the number $\pi$ from the billiard point of view), Regul. Chaotic Dyn., 8 (2003), 375–394. http://dx.doi.org/10.1070/RD2003v008n04ABEH000252 doi: 10.1070/RD2003v008n04ABEH000252 |
[2] | F. Dubeau, Collisions, or reflections and rotations, leading to the digits of $\pi$, Open Journal of Mathematical Sciences, to appear, 2022. |
[3] | F. Dubeau, Hyperbolic reflections leading to the digits of $\ln(2)$, J. Appl. Math. Phys., 10 (2022), 112–131. http://dx.doi.org/10.4236/jamp.2022.101009 doi: 10.4236/jamp.2022.101009 |
[4] | C. T. Fike, Computer Evaluation of Mathematical Functions, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1968. |
[5] | R. J. Pulskamp, J. A. Delaney, Computer and Calculator Computation of Elementary Functions, UMAP J., 12 (1991), 317–348. |
[6] | J. M. Muller, Elementary Functions: Algorithms and Implementation, Third Edition, Birkhäuser Boston Inc., Boston, MA, 2016. http://dx.doi.org/10.1007/978-1-4899-7983-4 |
[7] | D. H. Bailey, P. B. Borwein, S. Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp., 66 (1997), 903–913. http://dx.doi.org/10.1090/S0025-5718-97-00856-9 doi: 10.1090/S0025-5718-97-00856-9 |