Research article

A smooth Levenberg-Marquardt method without nonsingularity condition for wLCP

  • In this paper we consider the weighted Linear Complementarity Problem (wLCP). By using a smooth weighted complementarity function, we reformulate the wLCP as a smooth nonlinear equation and propose a Levenberg-Marquardt method to solve it. The proposed method differentiates itself from the current Levenberg-Marquardt type methods by adopting a simple derivative-free line search technique. It is shown that the proposed method is well-defined and it is globally convergent without requiring wLCP to be monotone. Moreover, the method has local sub-quadratic convergence rate under the local error bound condition which is weaker than the nonsingularity condition. Some numerical results are reported.

    Citation: Xiaorui He, Jingyong Tang. A smooth Levenberg-Marquardt method without nonsingularity condition for wLCP[J]. AIMS Mathematics, 2022, 7(5): 8914-8932. doi: 10.3934/math.2022497

    Related Papers:

    [1] Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
    [2] Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075
    [3] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [4] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [5] Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029
    [6] Ala Eddine Taier, Ranchao Wu, Naveed Iqbal . Boundary value problems of hybrid fractional integro-differential systems involving the conformable fractional derivative. AIMS Mathematics, 2023, 8(11): 26260-26274. doi: 10.3934/math.20231339
    [7] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
    [8] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [9] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [10] Mohamed Hannabou, Muath Awadalla, Mohamed Bouaouid, Abd Elmotaleb A. M. A. Elamin, Khalid Hilal . One class class of coupled system fractional impulsive hybrid integro- differential equations. AIMS Mathematics, 2024, 9(7): 18670-18687. doi: 10.3934/math.2024908
  • In this paper we consider the weighted Linear Complementarity Problem (wLCP). By using a smooth weighted complementarity function, we reformulate the wLCP as a smooth nonlinear equation and propose a Levenberg-Marquardt method to solve it. The proposed method differentiates itself from the current Levenberg-Marquardt type methods by adopting a simple derivative-free line search technique. It is shown that the proposed method is well-defined and it is globally convergent without requiring wLCP to be monotone. Moreover, the method has local sub-quadratic convergence rate under the local error bound condition which is weaker than the nonsingularity condition. Some numerical results are reported.



    Hybrid differential equations have been considered more important and served as special cases of dynamical systems. Dhage and Lakshmikantham [1] were the first to study ordinary hybrid differential equation and studied the existence of solutions for this boundary value problem. In recent years, with the wide study of fractional differential equations, the theory of hybrid fractional differential equations were also studied by several researchers, see [2,3,4,5,6,7,8,9,10] and the references therein.

    Zhao et al. [2] studied existence and uniqueness results for the following hybrid differential equations involving Riemann-Liouville fractional derivative

    Dq0+(x(t)f(t,x(t)))=g(t,x(t)),  a.e.tJ=[0,T]
    x(0)=0,

    where 0<q<1,fC(J×RR{0}) and gC(J×R,R).

    Zidane Baitiche et al. [11] considered the following boundary value problem of nonlinear fractional hybrid differential equations involving Caputo's derivative

    CDα0+(x(t)f(t,x(μ(t))))=g(t,x(μ(t))),  tI=[0,1]
    a[x(t)f(t,x(μ(t)))]|t=0+b[x(t)f(t,x(μ(t)))]|t=1=c,

    where 0<α1,CDα0+ is the Caputo fractional derivative. fC(I×RR{0}),gC(I×R,R).

    As we all known, the hadamard fractional differential equations are also popular in the literature, see [12,13,14,15,16], so some authors began to study the theory of fractional hybrid differential equation of hadamard type.

    Zidane Baitiche et al. [17] studied the existence of solutions for fractional hybrid differential equation of hadamard type with dirichlet boundary conditions

    HDα(x(t)f(t,x(t)))=g(t,x(t)),  1<t<e, 1<α2,
    x(1)=0,   x(e)=0,

    where 1<α2, HDα is the Hadamard fractional derivative, fC([1,e]×RR{0}) and gC([1,e]×R,R).

    In [18], M. Jamil et al. discussed the existence result for the boundary value problem of hybrid fractional integro-differential equations involving Caputo's derivative given by

    CDα(CDωu(t)mi=1Iβifi(t,u(t))g(t,u(t)))=h(t,u(t),Iγu(t)),  tJ=[0,1],
    u(0)=0, Dωu(0)=0, u(1)=δu(η),  0<δ<1,  0<η<1,

    where CDα is the Caputo fractional derivative of order α, CDω is the Caputo fractional derivative of order ω, 0<α1, 1<ω2.

    In order to analyze fractional differential equations in a generic way, a fractional derivative with respect to another function called φ-Caputo derivative was proposed [19].

    By mixing idea of the above works, we derived an existence result for the nonlocal boundary value problems of hybrid φ-Caputo fractional integro-differential equations

    CDα φ(CDβ φu(t)mi=1Iωi φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))g(t,u(t),Iγ1 φu(t),,Iγp φu(t)))=h(t,u(t)),tJ=[0,1], (1.1)
    u(0)=0, CDβ φu(0)=0, u(1)=kj=1δju(ξj), (1.2)

    where 0<α1, 1<β2, CDα φ is the φ-Caputo fractional derivative of order α, CDβ φ is the φ-Caputo fractional derivative of order β, the function φ: [0,1]R is a strictly increasing function such that φC2[0,1] with φ(x)>0 for all x[0,1], Iμ φ denote the φ-Riemann-Liouville fractional integral of order μ, gC(J×Rp+1,R{0}), hC(J×R,R) and fiC(J×Rn+1,R) with fi(0,0,,0n+1)=0, wi>0, i=1,2,,m, μ1,,μn>0 and γ1,,γp>0, 0<δj<1, j=1,2,,k, 0<ξ1<ξ2<<ξk<1.

    It is notable that the fractional hybrid integro-differential equation presented in this paper is the novel in the sense that the fractional derivative with respect to another function called φ-Caputo fractional derivative. Note that the hybrid fractional integro-differential equations involving Caputo's derivative in [18] is a special case of our hybrid φ-Caputo fractional integro-differential equations with φ(t)=t. Moreover, all dependent functions fi and g in our paper are in the form of multi-term. Furthermore, our problem is more general than the work in [8], as we consider the problem with multi-point boundary conditions, while the authors in [8] only investigated two-point boundary condition.

    The organization of this work is as follows. Section 2 contains some preliminary facts that we need in the sequel. In section 3, we present the solution for the hybrid fractional integro-differential equation (1.1), (1.2) and then prove our main existence results. Finally, we illustrate the obtained results by an example.

    In the following and throughtout the text, a>0 is a real, x:[a,b]R an integrable function and φC2[a,b] an increasing function such that with φ(t)0 for all t[a,b].

    Definition 2.1 The φ-Riemann-Liouville fractional integral of x of order α is defined as follows

    Iα φa+x(t):=1Γ(α)taφ(s)(φ(t)φ(s))α1x(s)ds.

    Definition 2.2 The φ-Riemann-Liouville fractional derivative of x of order α is defined as follows

    Dα φa+x(t):=(1φ(t)ddt)nInα φa+x(t)=1Γ(nα)(1φ(t)ddt)ntaφ(s)(φ(t)φ(s))nα1x(s)ds,

    here n=[α]+1.

    Remark 2.1 Let α,β>0, then the relation holds

    Iα φa+Iβ φa+x(t)=Iα+β φa+x(t).

    Definition 2.3 Let α>0 and xCn1[a,b], the φ-Caputo fractional derivative of x of order α is defined as follows

    CDα φa+x(t):=Dα φa+[x(t)n1k=0x[k]φ(a)k!(φ(t)φ(a))k], n=[α]+1 for αN, n=α for αN,

    where x[k]φ(t):=(1φ(t)ddt\bigamma)kx(t).

    Theorem 2.1 [20] Let x:[a,b]R. The following results hold:

    1. If xC[a,b], then CDα φa+Iα φa+x(t)=x(t);

    2. If xCn1[a,b], then

    Iα φ Ca+Dα φa+x(t)=x(t)n1k=0x[k]φ(a)k!(φ(t)φ(a))k.

    Lemma 2.2 [18] Let S be a nonempty, convex, closed, and bounded set such that SE, and let A:EE and B:SE be two operators which satisfy the following :

    (H1)A is contraction;

    (H2)B is compact and continuous, and

    (H3)u=Au+Bv, vSuS.

    Then there exists a solution of the operator equation u=Au+Bu.

    Let E=C(J,R) be a Banach space equipped with the norm

    u=suptJ|u(t)|   and  (uv)(t)=u(t)v(t),   tJ.

    Then E is a Banach algebra with the above norm and multiplication.

    Lemma 3.1 Suppose that α,β,ωi,i=1,2,,m,γi,i=1,2,,p,μi,i=1,2,,n,δj,ξj,j=1,2,,k and functions g,h,fi,i=1,2,,m satisfy problem (1.1), (1.2). Then the unique solution of (1.1), (1.2) is given by

    u(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))[10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))kj=1δjξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτdskj=1δjmi=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))], (3.1)

    where

    Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))=t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds;
    Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))=10(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds;
    Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))=ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds.

    Proof. We apply φ-Riemann-Liouville fractional integral Iα φ on both sides of (1.1), by Theorem 2.1, we have

    CDβ φu(t)mi=1Iωi φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))g(t,u(t),Iγ1 φu(t),,Iγp φu(t))=Iα φh(t,u(t))+c0,

    then by u(0)=0, CDβ φu(0)=0, fi(0,0,,0n+1)=0, we get c0=0. i.e,

    CDβ φu(t)=g(t,u(t),Iγ1 φu(t),,Iγp φu(t))t0(φ(t)φ(s))α1Γ(α)φ(s)h(s,u(s))ds+mi=1Iωi φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t)). (3.2)

    Apply again fractional integral Iβ φ on both sides of (3.2) and by Theorem 2.1, we get

    u(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))+c1+c2(φ(t)φ(0)), (3.3)

    u(0)=0, fi(0,0,,0n+1)=0 yield c1=0, thus equation (3.3) is reduced to

    u(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(t,u(t),Iμ1 φu(t),,Iμn φu(t))+c2(φ(t)φ(0)), (3.4)

    specially.

    u(1)=10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))+c2(φ(1)φ(0)),
    u(ξj)=ξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))+c2(φ(ξj)φ(0)),

    from u(1)=kj=1δju(ξj), we have

    c2=1kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))[10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+mi=1Iωi+β φfi(1,u(1),Iμ1 φu(1),,Iμn φu(1))kj=1δjξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτdskj=1δjmi=1Iωi+β φfi(ξj,u(ξj),Iμ1 φu(ξj),,Iμn φu(ξj))].

    Consequently, we can get the desired result. The proof is completed.

    Theorem 3.2 Suppose that functions gC(J×Rp+1,R{0}), hC(J×R,R) and fiC(J×Rn+1,R) with fi(0,0,,0n+1)=0. Furthermore, assume that

    (C1) there exist bounded mapping σ:[0,1]R+, λ:[0,1]R+ such that

    |g(t,k1,k2,,kp+1)g(t,k1,k2,,kp+1)|σ(t)p+1i=1|kiki|

    for tJ and (k1,k2,,kp+1),(k1,k2,,kp+1)Rp+1, and

    |h(t,u)h(t,v)|λ(t)|uv| for tJ and u,vR;

    (C2) there exist ϕi,Ω,χC(J,R+),i=1,2,,m such that

    |fi(t,k1,k2,,kn+1)|ϕi(t),  (t,k1,k2,,kn+1)J×Rn+1,
    |h(t,u)|Ω(t),  (t,u)J×R,
    |g(t,k1,k2,,kp+1)|χ(t),  (t,k1,k2,,kp+1)J×Rp+1;

    (C3) there exists r>0 such that

    (1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(χΩ(φ(1)φ(0))αΓ(α+1)(φ(1)φ(0))βΓ(β+1)+mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1))r; (3.5)
    (χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(φ(1)φ(0))βΓ(β+1)<1, (3.6)

    where Ω=sup0t1|Ω(t)|, ϕi=sup0t1|ϕi(t)|, i=1,2,,p, χ=sup0t1|χ(t)|, λ=sup0t1|λ(t)|, σ=sup0t1|σ(t)|.

    Then the hybrid problem (1.1), (1.2) has at least one solution.

    Proof. Define a subset S of E as

    S={uE: ur},

    where r satisfies inequality (3.5). Clearly S is closed, convex and bounded subset of the Banach space E. Define two operators A:EE by

    Au(t)=t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))ξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds, (3.7)
    Bu(t)=mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds. (3.8)

    Then u(t) is a solution of problem (1.1), (1.2) if and only if u(t)=Au(t)+Bu(t). We shall show that the operators A and B satisfy all the conditions of Lemma 2.2. We split the proof into several steps.

    Step 1. We first show that A is a contraction mapping. Let u(t),v(t)S, we write

    G(s)=g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτg(s,v(s),Iγ1 φv(s),,Iγp φv(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτ,

    then by (C1) we have

    |G(s)|=|g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτg(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτ+g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτg(s,v(s),Iγ1 φv(s),,Iγp φv(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,v(τ))dτ||g(s,u(s),Iγ1 φu(s),,Iγp φu(s))|s0(φ(s)φ(τ))α1Γ(α)φ(τ)|h(τ,u(τ))h(τ,v(τ))|dτ+s0(φ(s)φ(τ))α1Γ(α)φ(τ)|h(τ,v(τ))|dτ|g(s,u(s),Iγ1 φu(s),,Iγp φu(s))g(s,v(s),Iγ1 φv(s),,Iγp φv(s))|χλuv(φ(s)φ(0))αΓ(α+1)+Ω(φ(s)φ(0))αΓ(α+1)σp+1i=1(φ(s)φ(0))γiΓ(γi+1)uv(χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)uv,

    thus we have

    |Au(t)Av(t)|t0(φ(t)φ(s))β1Γ(β)φ(s)G(s)ds+φ(t)φ(0)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|10(φ(1)φ(s))β1Γ(β)φ(s)G(s)ds+φ(t)φ(0)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|kj=1δjξj0(φ(ξj)φ(s))β1Γ(β)φ(s)G(s)ds(χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(φ(1)φ(0))βΓ(β+1)uv,

    which implies

    Au(t)Av(t)[(χλ+Ωσp+1i=1(φ(1)φ(0))γiΓ(γi+1))(φ(1)φ(0))αΓ(α+1)(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(φ(1)φ(0))βΓ(β+1)]uv,

    in view of (3.6), this shows that A is a contraction mapping.

    Step 2. The operator B is compact and continuous on S.

    First, we show that B is continuous on S. Let {un} be a sequence of functions in S converging to a function uS. Then by Lebesgue dominated convergence theorem,

    limnBun(t)=limn[mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds].=mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)limnfi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)limnfi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)limnfi(s,un(s),Iμ1 φun(s),,Iμn φun(s))ds=mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φ(s),,Iμn φu(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds=Bu(t).

    This shows that B is continuous on S. It is sufficient to show that B(S) is a uniformly bounded and equicontinuous set in E.

    First, we note that

    |Bu(t)|mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)|fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))|ds+φ(t)φ(0)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)|fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))|ds+(φ(t)φ(0))kj=1δj|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)|fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))|dsmi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1)+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1)=(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1).

    This shows that B is uniformly bounded on S.

    Next, we show that B is an equicontinuous set in E. Let t1,t2J with t1<t2 and uS. Then we have

    |Bu(t2)Bu(t1)|=|mi=1t20(φ(t2)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))dsmi=1t10(φ(t1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds+φ(t2)φ(t1)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds(φ(t2)φ(t1))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,u(s),Iμ1 φu(s),,Iμn φu(s))ds|mi=1ϕiΓ(ωi+β)[|t10[(φ(t2)φ(s))ωi+β1(φ(t1)φ(s))ωi+β1]φ(s)ds+t2t1[(φ(t2)φ(s))ωi+β1φ(s)ds|+φ(t2)φ(t1)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|10(φ(1)φ(s))ωi+β1φ(s)ds+(φ(t2)φ(t1))kj=1δj|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|ξj0(φ(ξj)φ(s))ωi+β1φ(s)ds]mi=1ϕiΓ(ωi+β+1)[|(φ(t2)φ(0))ωi+β(φ(t1)φ(0))ωi+β|+φ(t2)φ(t1)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|(φ(1)φ(0))ωi+β+(φ(t2)φ(t1))kj=1δj|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|(φ(ξj)φ(0))ωi+β].

    Let h(t)=(φ(t)φ(0))ωi+β. Then h is continuously differentiable function. Consequently, for all t1,t2[0,1], without loss of generality, let t1<t2, then there exist positive constants M such that

    |h(t2)h(t1)|=|h(ξ)||t2t1|M|t2t1|,   ξ(t1,t2).

    On the other hand, for φC[0,1], thus there exist positive constants N such that |φ(t2)φ(t1)|=|φ(ξ)||t2t1|N|t2t1|,   ξ(t1,t2), from which we deduce

    |Bu(t2)Bu(t1)|0    as  t2t10.

    Therefore, it follows from the Arzela-Ascoli theorem that B is a compact operator on S.

    Step 3. Next we show that hypothesis (H3) of Lemma 2.2 is satisfied. Let vS, then we have

    |u(t)|=|Au(t)+Bv(t)||Au(t)|+|Bv(t)||t0(φ(t)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))10(φ(1)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))ξj0(φ(ξj)φ(s))β1Γ(β)φ(s)g(s,u(s),Iγ1 φu(s),,Iγp φu(s))s0(φ(s)φ(τ))α1Γ(α)φ(τ)h(τ,u(τ))dτds|+|mi=1t0(φ(t)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,v(s),Iμ1 φv(s),,Iμn φv(s))ds+φ(t)φ(0)kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=110(φ(1)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,v(s),Iμ1 φv(s),,Iμn φv(s))ds(φ(t)φ(0))kj=1δjkj=1δj(φ(ξj)φ(0))(φ(1)φ(0))mi=1ξj0(φ(ξj)φ(s))ωi+β1Γ(ωi+β)φ(s)fi(s,v(s),Iμ1 φv(s),,Iμn φv(s))ds|(1+(φ(1)φ(0))(1+kj=1δj)|kj=1δj(φ(ξj)φ(0))(φ(1)φ(0))|)(χΩ(φ(1)φ(0))αΓ(α+1)(φ(1)φ(0))βΓ(β+1)+mi=1ϕi(φ(1)φ(0))ωi+βΓ(ωi+β+1))r,

    which implies ur and so uS.

    Thus all the conditions of Lemma 2.2 are satisfied and hence the operator equation u=Au+Bu has a solution in S. In consequence, the problem (1.1), (1.2) has a solution on J. This completes the proof.

    In this section, we provide an example to illustrate our main result.

    Example 4.1 Consider the following hybrid φ-Caputo fractional integro-differential equations

    CD12 t4(CD32 t4u(t)2i=1Iωit4fi(t,u(t),I13t4u(t),I43t4u(t))14t2(|u(t)|1+|u(t)|+|I14t4u(t)|1+|I14t4u(t)|+sinI12t4u(t)))=25cos(t4)(|u(t)||u(t)|+1),  tJ=[0,1], (4.1)
    u(0)=0, CD32 t4u(0)=0, u(1)=13u(13), (4.2)

    where

    2i=1Iωit4fi(t,u(t),I13t4u(t),I43t4u(t))=I13t4(t[|u(t)|1+|u(t)|+sin(I13t4u(t))+cos(I43t4u(t))])+I23t4(t10[|u(t)|1+|u(t)|+arctan(I13t4u(t))+sin(I43t4u(t))]). (4.3)

    We note that α=12,β=32,m=2,n=2,p=2,k=1,δ=13,ξ=13,ω1=13,ω2=23,μ1=13,μ2=43,γ1=14,γ2=12,φ(t)=t4,

    f1(t,u(t),I13t4u(t),I43t4u(t))=t[|u(t)|1+|u(t)|+sin(I13t4u(t))+cos(I43t4u(t))],
    f2(t,u(t),I13t4u(t),I43t4u(t))=t10[|u(t)|1+|u(t)|+arctan(I13t4u(t))+sin(I43t4u(t))],
    g(t,u(t),I14t4u(t),I12t4u(t))=14t2(|u(t)|1+|u(t)|+|I14t4u(t)|1+|I14t4u(t)|+sinI12t4u(t)),
    h(t,u(t))=25cos(t4)(|u(t)||u(t)|+1).

    Thus we have

    |g(t,u(t),I14t4u(t),I12t4u(t))g(t,v(t),I14t4v(t),I12t4v(t))|σ(t)[1+t14Γ(54)+t12Γ(32)]|u(t)v(t)|=t24[1+t14Γ(54)+t12Γ(32)]|u(t)v(t)|,
    |h(t,u(t))h(t,v(t))|=25cos(t4)|u(t)v(t)|.

    Therefore,

    σ=sup0t1|σ(t)|=sup0t1t24[1+t14Γ(54)+t12Γ(32)]=14(1+1Γ(54)+1Γ(32))=14(1+10.9064+10.8862)=0.8079;
    λ=sup0t1|λ(t)|=sup0t125cos(t4)=0.4;
    ϕ1=sup0t1|ϕ1(t)|=sup0t1t(1+1+1)=3;
    ϕ2=sup0t1|ϕ2(t)|=sup0t1t10(1+π2+1)=110×3.57=0.357;
    Ω=sup0t1|Ω(t)|=sup0t125cos(t4)=0.4;
    χ=sup0t1|χ(t)|=sup0t1t24(1+1+1)=34=0.75.

    Choose r>0.5, then we have

    (1+14×4329)[0.75×0.4×(14)12Γ(32)×(14)32Γ(52)+3×(14)116Γ(176)+0.357×(14)136Γ(196)]=0.4016r.

    Moreover,

    (0.75×0.4+0.4×0.8079×((14)14Γ(54)+(14)12Γ(32)))(14)12Γ(32)(1+14×4329)(14)32Γ(52)=0.097<1.

    Now, by using Theorem 3.2, it is deduced that the fractional hybrid integro-differential problem (4.1), (4.2) has a solution.

    Hybrid fractional integro-differential equations have been considered more important and served as special cases of dynamical systems. In this paper, we introduced a new class of the hybrid φ-Caputo fractional integro-differential equations. By using famous hybrid fixed point theorem due to Dhage, we have developed adequate conditions for the existence of at least one solution to the hybrid problem (1.1), (1.2). The respective results have been verified by providing a suitable example.

    We express our sincere thanks to the anonymous reviewers for their valuable comments and suggestions. This work is supported by the Natural Science Foundation of Tianjin (No.(19JCYBJC30700)).

    The authors declare no conflict of interest in this paper.



    [1] K. M. Anstreicher, Interior-point algorithms for a generalization of linear programming and weighted centering, Optim. Method. Softw., 27 (2012), 605–612. https://doi.org/10.1080/10556788.2011.644791 doi: 10.1080/10556788.2011.644791
    [2] S. Asadi, Z. Darvay, G. Lesaja, N. Mahdavi-Amiri, F. Potra, A full-Newton step interior-point method for monotone weighted linear complementarity problems, J. Optim. Theory Appl., 186 (2020), 864–878. https://doi.org/10.1007/s10957-020-01728-4 doi: 10.1007/s10957-020-01728-4
    [3] X. N. Chi, M. S. Gowda, J. Tao, The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra, J. Global Optim., 73 (2019), 153–169. https://doi.org/10.1007/s10898-018-0689-z doi: 10.1007/s10898-018-0689-z
    [4] X. N. Chi, Z. P. Wan, Z. J. Hao, A full-modified-Newton step O(n) infeasible interior-point method for the special weighted linear complementarity problem, J. Ind. Manag. Optim., 2021. https://doi.org/10.3934/jimo.2021082
    [5] J. S. Chen, The semismooth-related properties of a merit function and adescent method for the nonlinear complementarity problem, J. Glob. Optim., 36 (2006), 565–580. https://doi.org/10.1007/s10898-006-9027-y doi: 10.1007/s10898-006-9027-y
    [6] F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, New York: Springer, 2003.
    [7] J. Y. Fan, J. Y. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition, Comput. Optim. Appl., 34 (2006), 47–62. https://doi.org/10.1007/s10589-005-3074-z doi: 10.1007/s10589-005-3074-z
    [8] J. Y. Fan, Accelerating the modified Levenberg-Marquardt method for nonlinear equations, Math. Comput., 83 (2014), 1173–1187. https://doi.org/10.1090/S0025-5718-2013-02752-4 doi: 10.1090/S0025-5718-2013-02752-4
    [9] J.Y. Fan, Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23–39. https://doi.org/10.1007/s00607-004-0083-1 doi: 10.1007/s00607-004-0083-1
    [10] M. S. Gowda, Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras, J. Glob. Optim., 74 (2019), 285–295. https://doi.org/10.1007/s10898-019-00760-7 doi: 10.1007/s10898-019-00760-7
    [11] Z. H. Huang, J. Sun, A non-interior continuation algorithm for the P0 or P LCP with strong global and local convergence properties, Appl. Math. Optim., 52 (2005), 237–262. https://doi.org/10.1007/s00245-005-0827-0 doi: 10.1007/s00245-005-0827-0
    [12] Z. H. Huang, L. P. Zhang, J. Y. Han, A hybrid smoothing-nonsmooth Newton-type algorithm yielding an exact solution of the P0-LCP, J. Comput. Math., 22 (2004), 797–806.
    [13] W. L. Liu, C. Y. Wang, A smoothing Levenberg-Marquardt method for generalized semi-infinite programming, Comput. Appl. Math., 32 (2013), 89–105. https://doi.org/10.1007/s40314-013-0013-y doi: 10.1007/s40314-013-0013-y
    [14] F. A. Potra, Weighted complementarity problems-A new paradigm for computing equilibria, SIAM J. Optim., 22 (2012), 1634–1654. https://doi.org/10.1137/110837310 doi: 10.1137/110837310
    [15] F. A. Potra, Sufficient weighted complementarity problems, Comput. Optim. Appl., 64 (2016), 467–488. https://doi.org/10.1007/s10589-015-9811-z doi: 10.1007/s10589-015-9811-z
    [16] J. Y. Tang, A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs, Comput. Appl. Math., 37 (2018), 3927–3936. https://doi.org/10.1007/s40314-017-0554-6 doi: 10.1007/s40314-017-0554-6
    [17] J. Y. Tang, H. C. Zhang, A nonmonotone smoothing Newton algorithm for weighted complementarity problems, J. Optim. Theory Appl., 189 (2021), 679–715. https://doi.org/10.1007/s10957-021-01839-6 doi: 10.1007/s10957-021-01839-6
    [18] J. Y. Tang, J. C. Zhou, Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem, Comput. Optim. Appl., 80 (2021), 213–244. https://doi.org/10.1007/s10589-021-00300-8 doi: 10.1007/s10589-021-00300-8
    [19] J. Y. Tang, J. C. Zhou, A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems, Optim. Method. Softw., 2021. https://doi.org/10.1080/10556788.2021.1903007
    [20] H. Y. Wang, J. Y. Fan, Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound, Optim. Method. Softw., 35 (2020), 767–786. https://doi.org/10.1080/10556788.2019.1694927 doi: 10.1080/10556788.2019.1694927
    [21] Y. Y. Ye, A fully polynomial-time approximation algorithm for computing a stationary point of the general linear complementarity problem, Math. Oper. Res., 18 (1993), 334–345. https://doi.org/10.1287/moor.18.2.334 doi: 10.1287/moor.18.2.334
    [22] J. Zhang, A smoothing Newton algorithm for weighted linear complementarity problem, Optim. Lett., 10 (2016), 499–509. https://doi.org/10.1007/s11590-015-0877-4 doi: 10.1007/s11590-015-0877-4
    [23] J. L. Zhang, J. Chen, A smoothing Levenberg-Marquardt type method for LCP, J. Comput. Math., 22 (2004), 735–752.
    [24] Y. B. Zhao, D. Li, A globally and locally superlinearly convergent non-interior-point algorithm for P0 LCPs, SIAM J. Optim., 13 (2003), 1195–1221. https://doi.org/10.1137/S1052623401384151 doi: 10.1137/S1052623401384151
    [25] J. L. Zhang, J. Chen, A new noninterior predictor-corrector method for the P0 LCP, Appl. Math. Optim., 53 (2006), 79–100. https://doi.org/10.1007/s00245-005-0836-z doi: 10.1007/s00245-005-0836-z
    [26] L. P. Zhang, X. S. Zhang, Global linear and quadratic one-step smoothing Newton method for P0-LCP, J. Glob. Optim., 25 (2003), 363–376. https://doi.org/10.1023/A:1022528320719 doi: 10.1023/A:1022528320719
  • This article has been cited by:

    1. Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Nonlocal coupled hybrid fractional system of mixed fractional derivatives via an extension of Darbo's theorem, 2021, 6, 2473-6988, 3915, 10.3934/math.2021232
    2. Muath Awadalla, Nazim I. Mahmudov, Hüseyin Işık, On System of Mixed Fractional Hybrid Differential Equations, 2022, 2022, 2314-8888, 1, 10.1155/2022/1258823
    3. Ashwini D. Mali, Kishor D. Kucche, José Vanterler da Costa Sousa, On coupled system of nonlinear Ψ-Hilfer hybrid fractional differential equations, 2021, 0, 1565-1339, 10.1515/ijnsns-2021-0012
    4. Muath Awadalla, Kinda Abuasbeh, Muthaiah Subramanian, Murugesan Manigandan, On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions, 2022, 10, 2227-7390, 1681, 10.3390/math10101681
    5. Hamid Beddani, Moustafa Beddani, Zoubir Dahmani, A new tripled system of hybrid differential equations with φ-Caputo derivatives, 2022, 55, 27044963, 12, 10.20948/mathmontis-2022-55-2
    6. Mohamed Benallou, Hamid Beddani, Moustafa Beddani, Existence of solution for a tripled system of fractional hybrid differential equations with laplacie involving Caputo derivatives, 2024, 5, 2764-0981, e11971, 10.54021/seesv5n2-734
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1809) PDF downloads(65) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog