The Levenberg-Marquardt method is one of the most important methods for solving systems of nonlinear equations and nonlinear least-squares problems. It enjoys a quadratic convergence rate under the local error bound condition. Recently, to solve nonzero-residue nonlinear least-squares problem, Behling et al. propose a modified Levenberg-Marquardt method with at least superlinearly convergence under a new error bound condtion [
Citation: Lin Zheng, Liang Chen, Yanfang Ma. A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations[J]. AIMS Mathematics, 2022, 7(1): 1241-1256. doi: 10.3934/math.2022073
The Levenberg-Marquardt method is one of the most important methods for solving systems of nonlinear equations and nonlinear least-squares problems. It enjoys a quadratic convergence rate under the local error bound condition. Recently, to solve nonzero-residue nonlinear least-squares problem, Behling et al. propose a modified Levenberg-Marquardt method with at least superlinearly convergence under a new error bound condtion [
[1] | M. Ahookhosh, F. J. A. Artacho, R. M. T. Fleming, P. T. Vuong, Local convergence of the Levenberg–Marquardt method under {H}ölder metric subregularity, Adv. Comput. Math., 45 (2019), 2771–2806. doi: 10.1007/s10444-019-09708-7. doi: 10.1007/s10444-019-09708-7 |
[2] | K. Amini, F. Rostami, G. Caristi, An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations, Optimization, 67 (2018), 637–650. doi: 10.1080/02331934.2018.1435655. doi: 10.1080/02331934.2018.1435655 |
[3] | R. Behling, D. S. Gonçalves, S. A. Santos, Local convergence analysis of the Levenberg–Marquardt framework for Nonzero-Residue nonlinear least-squares problems under an error bound condition, J. Optim. Theory Appl., 183 (2019), 1099–1122. doi: 10.1007/s10957-019-01586-9. doi: 10.1007/s10957-019-01586-9 |
[4] | J. E. Dennis, R. B. Schnable, Numerical methods for unconstrained optimization and nonlinear equations, 1983. doi: 10.1137/1.9781611971200. |
[5] | J. Y. Fan, J. Y. Pan, A note on the Levenberg-Marquardt parameter, Appl. Math. Comput., 207 (2009), 351–359. doi: 10.1016/j.amc.2008.10.056. doi: 10.1016/j.amc.2008.10.056 |
[6] | J. Y. Fan, Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23–39. doi: 10.1007/s00607-004-0083-1. doi: 10.1007/s00607-004-0083-1 |
[7] | F. Andreas, Local behavior of an iterative framework for generalized equations with nonisolated solutions, Math. Program., 94 (2002), 91–124. doi: 10.1007/s10107-002-0364-4. doi: 10.1007/s10107-002-0364-4 |
[8] | L. Guo, G. H. Lin, J. J. Ye, Solving mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 166 (2015), 234–256. doi: 10.1007/s10957-014-0699-z. doi: 10.1007/s10957-014-0699-z |
[9] | M. Heydari, T. D. Niri, M. M. Hosseini, A new modified trust region algorithm for solving unconstrained optimization problems, J. Math. Ext., 12 (2018), 115–135. |
[10] | E. W. Karas, S. A. Santos, B. F. Svaiter, Algebraic rules for computing the regularization parameter of the Levenberg–Marquardt method, Comput. Optim. Appl., 65 (2016), 723–751. doi: 10.1007/s10589-016-9845-x. doi: 10.1007/s10589-016-9845-x |
[11] | C. F. Ma, L. H. Jiang, Some research on Levenberg-Marquardt method for the nonlinear equations, Appl. Math. Comput., 184 (2007), 1032–1040. doi: 10.1016/j.amc.2006.07.004. doi: 10.1016/j.amc.2006.07.004 |
[12] | J. J. Moré, B. S. Garbow, K. E. Hillstrom, Testing unconstrained optimization software, ACM T. Math. Software, 7 (1981), 17–41. doi: 10.1145/355934.355936. doi: 10.1145/355934.355936 |
[13] | T. D. Niri, M. Heydari, M. M. Hosseini, Correction of trust region method with a new modified Newton method, Int. J. Comput. Math., 97 (2020), 1118–1132. doi: 10.1080/00207160.2019.1607844. doi: 10.1080/00207160.2019.1607844 |
[14] | H. V. Ngai, Global error bounds for systems of convex polynomials over polyhedral constraints, SIAM J. Optim., 25 (2015), 521–539. doi: 10.1137/13090599X. doi: 10.1137/13090599X |
[15] | J. Nocedal, S. J. Wright, Numerical optimization, New York: Springer, 1999. doi: 10.1007/978-3-540-35447-5. |
[16] | R. B. Schnabel, P. D. Frank, Tensor methods for nonlinear equations, SIAM J. Numer. Anal., 21 (1984), 815–843. doi: 10.1137/0721054. doi: 10.1137/0721054 |
[17] | H. H. Vui, Global Hölderian error bound for nondegenerate polynomials, SIAM J. Optim., 23 (2013), 917–933. doi: 10.1137/110859889. doi: 10.1137/110859889 |
[18] | H. Y. Wang, J. Y. Fan, Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound, Optim. Method. Softw, 35 (2020), 767–786. doi: 10.1080/10556788.2019.1694927. doi: 10.1080/10556788.2019.1694927 |
[19] | N. Yamashita, M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, In: Topics in numerical analysis, Vienna: Springer, 15 (2001), 239–249. doi: 10.1007/978-3-7091-6217-0_18. |
[20] | Y. X. Yuan, Problems on convergence of unconstrained optimization algorithms, In: Numerical linear algebra and optimization, Beijing: Science Press, 1999, 95–107. |
[21] | X. D. Zhu, G. H. Lin, Improved convergence results for a modified Levenberg-Marquardt method for nonlinear equations and applications in MPCC, Optim. Method. Software, 31 (2016), 791–804. doi: 10.1080/10556788.2016.1171863. doi: 10.1080/10556788.2016.1171863 |