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1. Introduction

This paper considers the weighted Linear Complementarity Problem (wLCP) introduced by
Potra [14] which consists in finding vectors x ∈ Rn, s ∈ Rn, y ∈ Rm such that

(wLCP) x, s ≥ 0, Px + Qs + Ry = d, xs = w. (1.1)

Here P ∈ R(n+m)×n,Q ∈ R(n+m)×n,R ∈ R(n+m)×m are given matrices, d ∈ Rn+m is a given vector, w ≥ 0
is a given weight vector (the data of the problem) and xs is the componentwise product of the vectors
x and s. The matrix R is assumed to have full column rank. If the weight vector w is chosen to be the
zero vector, then the wLCP reduces to the general LCP studied in [21]. The wLCP is called monotone,
if

P∆x + Q∆s + R∆y = 0 implies ∆xT ∆s ≥ 0.
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The wLCP can be used for modeling a larger class of problems from science and engineering. For
example, Fisher’s competitive market equilibrium model can be formulated as a wLCP that can be
efficiently solved by interior-point methods [14]. Moreover, the Quadratic Programming and Weighted
Centering problem, which generalizes the notion of a Linear Programming and Weighted Centering
problem proposed by Anstreicher [1], can be formulated as a monotone wLCP [14]. Lately, Chi et
al. [3] and Gowda [10] studied wLCP on Euclidean Jordan algebras.

Since Potra introduced the notion of wLCP [14], many numerical algorithms have been proposed
for solving this problem. One class of effective algorithms is interior-point methods. For example,
Potra [14] proposed two interior-point methods for solving general monotone wLCPs. In [15], Potra
proposed a corrector-predictor interior-point method for solving the sufficient wLCP. Asadi et al. [2]
introduced a full-Newton step interior-point method for solving the monotone wLCP. Chi et al. [4]
proposed a full-modified-Newton infeasible interior-point method for solving a special wLCP. It is
worth pointing out that, to establish the computational complexity of interior-point methods, one
usually requires that the wLCP is monotone (e.g., [2, 14]). Another class of effective algorithms for
solving the wLCP is smoothing Newton-type algorithms. This class of algorithms is to use a
smoothing function to reformulate the wLCP as a system of smooth nonlinear equations and then
solve it by Newton method. For example, Zhang [22] presented a smoothing Newton algorithm for
solving the wLCP. Tang [16] proposed a variant nonmonotone smoothing algorithm for solving the
wLCP with improved numerical results. Tang and Zhang [17] proposed a nonmonotone smoothing
Newton algorithm for solving general wCPs. Notice that, to ensure Newton step be feasible,
smoothing Newton-type algorithms in [16, 17, 22] also require that the wLCP is monotone. Moreover,
to obtain local fast convergence rate, smoothing Newton-type algorithms in [16, 22] need the
nonsingularity condition.

Lately, based on a nonsmooth weighted complementarity function, Tang and Zhou [19]
reformulated the wLCP as a nonsmooth nonlinear equation and proposed a damped Gauss-Newton
method to solve it. Their method can be used to solve nonmonotone wLCPs and has local quadratic
convergence under the local error bound condition which is weaker than the nonsingularity condition.
Motivated by their work, in this paper we introduce a weighted complementarity function which is
smooth everywhere. By using this function, we reformulate the wLCP as a smooth nonlinear equation
and propose a Levenberg-Marquardt method to solve it. Different from current Levenberg-Marquardt
type methods (e.g., [7–9]), the proposed method is designed based on a simple derivative-free line
search technique. Compared with smoothing Newton-type algorithms in [16, 17, 22], the proposed
method has two advantages. (i) It is well-defined and is globally convergent without any additional
condition. Hence it can be used to solve nonmonotone wLCPs. (ii) It has local sub-quadratic
convergence rate under the local error bound condition. It is worth pointing out that, to obtain the
local fast convergence rate, classical Levenberg-Marquardt methods (e.g., [7–9]) also need the
condition that the Jacobian is Lipschitz continuous. In this paper we show that this condition holds for
our method (see, Lemma 4.1 below). We also report some numerical results which indicate that our
method is more effective for solving monotone and nonmonotone wLCPs than the damped
Gauss-Newton method studied in [19].

This paper is organized as follows. In Section 2, we reformulate the wLCP as a smooth nonlinear
equation and propose a Levenberg-Marquardt method to solve it. In Section 3, we give its global
convergence. In Section 4, we analyze its local sub-quadratic convergence under the local error bound
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condition. Numerical results are reported in Section 5. Some conclusions are given in Section 6.
Throughout this paper, Rn denotes the set of all n dimensional real vectors. All vectors are column

vectors and for simplicity, the column vector (uT
1 , . . . , u

T
n )T is written as (u1, . . . , un) where ui ∈ R

ni . ‖ · ‖
denotes the 2-norm. For any vector x ∈ Rn, we denote x by vec(xi) and the diagonal matrix whose ith
diagonal element is xi by diag(xi). For a given set S ⊂ Rn and for any u ∈ Rn, dist(u, S ) = inf

v∈S
{‖u − v‖}.

For any α, β > 0, α = O(β) (respectively, α = o(β)) means that lim supβ→0
α
β
< ∞ (respectively,

lim supβ→0
α
β

= 0).

2. A smooth Levenberg-Marquardt method

2.1. The reformulation of wLCP

The weighted complementarity function serves an important role in designing Newton-type
methods for solving the wLCP. For a fixed c ≥ 0, a function φc(a, b) : R2 → R is called a weighted
complementarity function if it satisfies

φc(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = c.

One popular weighted complementarity function is

φc(a, b) := a + b −
√

a2 + b2 + 2c, ∀(a, b) ∈ R2.

When c = 0, φc(a, b) is the well-known Fischer-Burmeister function for nonlinear complementarity
problems. Obviously, φc(a, b) is not continuously differentiable (smooth) everywhere. By using
φc(a, b), Tang and Zhou [19] reformulated the wLCP as the following nonsmooth nonlinear equation:

Φ(x, s, y) :=


Px + Qs + Ry − d

φw1(x1, s1)
...

φwn(xn, sn)

 = 0,

where w = (w1, ...,wn)T ≥ 0 is the weight vector given in the wLCP. Tang and Zhou [19] presented a
damped Gauss-Newton method to solve Φ(x, s, y) = 0 and established its local quadratic convergence
under the local error bound condition.

In this paper, for a fixed c ≥ 0, we consider the following nonnegative function:

ψc(a, b) :=
1
2

(φc(a, b))2 =
1
2

(a + b −
√

a2 + b2 + 2c)2, ∀(a, b) ∈ R2. (2.1)

The following lemma shows that ψc is a weighted complementarity function and it is smooth
everywhere.

Lemma 2.1. Let ψc be defined by (2.1). Then the following results hold.
(i) ψc is a weighted complementarity function, i.e.,

ψc(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = c.
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(ii) ψc is continuously differentiable at any (a, b) ∈ R2 and

∇ψc(a, b) =

[
∇aψ

c(a, b)
∇bψ

c(a, b)

]
,

where ∇aψ
c(0, 0) = ∇bψ

c(0, 0) = −
√

2c and for any (a, b) , (0, 0),

∇aψ
c(a, b) =

(
1 −

a
√

a2 + b2 + 2c

)
φc(a, b),

∇bψ
c(a, b) =

(
1 −

b
√

a2 + b2 + 2c

)
φc(a, b).

(iii) For any (a, b) ∈ R2, one has
∇aψ

c(a, b)∇bψ
c(a, b) ≥ 0.

(iv) For any (a, b) ∈ R2, one has

ψc(a, b) = 0⇐⇒ ∇aψ
c(a, b) = 0⇐⇒ ∇bψ

c(a, b) = 0.

Proof. The result (i) obviously holds. By a direct computation, we can obtain the result (ii). Moreover,
for any (a, b) ∈ R2, by the result (ii), we have ∇aψ

c(0, 0)∇bψ
c(0, 0) = 2c ≥ 0, and if (a, b) , (0, 0), then

we also have

∇aψ
c(a, b)∇bψ

c(a, b) =

(
1 −

a
√

a2 + b2 + 2c

)(
1 −

b
√

a2 + b2 + 2c

)
(φc(a, b))2 ≥ 0,

where the inequality holds because

0 ≤ 1 −
a

√
a2 + b2 + 2c

≤ 2, 0 ≤ 1 −
b

√
a2 + b2 + 2c

≤ 2.

Now we prove the result (iv). First, we prove the implication

ψc(a, b) = 0⇐⇒ ∇aψ
c(a, b) = 0.

Since “ =⇒ ” obviously holds, we only need to prove “ ⇐= ”. By the result (ii), ∇aψ
c(0, 0) = 0 gives

c = 0 and so ψc(0, 0) = 0. For (a, b) , (0, 0), ∇aψ
c(a, b) = 0 gives φc(a, b) = 0 or 1 − a

√
a2+b2+2c

= 0.

If φc(a, b) = 0, then ψc(a, b) = 0 and we are done. If 1 − a
√

a2+b2+2c
= 0, then a =

√
a2 + b2 + 2c which

yields b = c = 0 and a = |a|. These implies that φc(a, b) = 0 and so ψc(a, b) = 0. By the same way, we
can also prove ψc(a, b) = 0⇐⇒ ∇bψ

c(a, b) = 0. The proof is completed. ut

Figures 1 and 2 illustrate the geometrical interpretations of φc and ψc with c = 1 which show that
they are very different.

By using the weighted complementarity function ψc given in (2.1), we now reformulate the wLCP
as the following smooth nonlinear equation:

H(x, s, y) :=


Px + Qs + Ry − d

ψw1(x1, s1)
...

ψwn(xn, sn)

 = 0. (2.2)
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Figure 1. z = φc(a, b).

Figure 2. z = ψc(a, b).

By Lemma 2.1, we have the following result.

Lemma 2.2. (i) H(x, s, y) = 0 if and only if (x, s, y) is a solution of the wLCP.
(ii) H(x, s, y) is continuously differentiable at any (x, s, y) ∈ R2n+m with the Jacobian

H′(x, s, y) =

(
P Q R

diag
(
∇xiψ

wi(xi, si)
)

diag
(
∇siψ

wi(xi, si)
)

0

)
, (2.3)

in which ∇xiψ
wi(·, ·) and ∇siψ

wi(·, ·) are given in Lemma 2.1 (ii).

2.2. The algorithm

Let z := (x, s, y) and H(z) be given in (2.2). We define the merit function Ψ : R2n+m → R as

Ψ(z) :=
1
2
‖H(z)‖2. (2.4)

Then, by Lemma 2.2, we have the following result.

Lemma 2.3. (i) Ψ(z) = 0 if and only if z = (x, s, y) is a solution of the wLCP.
(ii) Ψ(z) is continuously differentiable at any z ∈ R2n+m with its gradient ∇Ψ(z) = H′(z)T H(z).
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Now we describe our method as follows.

Algorithm 2.1. (A smooth Levenberg-Marquardt method)
Step 0: Choose parameters θ, ρ, γ ∈ (0, 1) and an initial point z0 := (x0, s0, y0). Set k := 0.
Step 1: If ∇Ψ(zk) = 0, then stop.
Step 2: Set µk := θ‖H(zk)‖δ where δ ∈ [1, 2] is a constant. Compute the search direction dk ∈ R

2n+m by
solving

[H′(zk)T H′(zk) + µkI]dk = −∇Ψ(zk). (2.5)

Step 3: Find a step-size αk := ρmk , where mk is the smallest nonnegative integer m satisfying

‖H(zk + ρmdk)‖ ≤ ‖H(zk)‖ − γ‖ρmdk‖
2. (2.6)

Step 4: Set zk+1 := zk + αkdk. Set k := k + 1 and go to Step 1.

The algorithmic framework of Algorithm 2.1 is much simpler than many Levenberg-Marquardt
type methods (e.g, [7–9, 13, 18, 23]). The main feature of Algorithm 2.1 is that it adopts a simple
derivative-free line search in Step 3 which avoids computing the gradient ∇Ψ(zk).

Theorem 2.1. Algorithm 2.1 is well-defined.

Proof. For some k, if ∇Ψ(zk) , 0, then H(zk) , 0 and hence µk = θ‖H(zk)‖δ > 0. So, H′(zk)T H′(zk)+µkI
is positive definite and the search direction dk in Step 2 is well-defined. Since ∇Ψ(zk) , 0, by (2.5) we
have dk , 0 and

∇Ψ(zk)T dk = −dT
k [H′(zk)T H′(zk) + µkI]dk < 0. (2.7)

This implies that dk is a descent direction of the merit function Ψ(z) at zk.Next, we show that there exists
at least a nonnegative integer m satisfying (2.6). On the contrary, we suppose that for any nonnegative
integer m,

‖H(zk + ρmdk)‖ − ‖H(zk)‖ > −γ‖ρmdk‖
2.

Multiplying both sides of the above inequality by 1
2 [‖H(zk + ρmdk)‖ + ‖H(zk)‖], we have

Ψ(zk + ρmdk) − Ψ(zk)
ρm > −

1
2
γρm‖dk‖

2[‖H(zk + ρmdk)‖ + ‖H(zk)‖]. (2.8)

Since Ψ is continuously differentiable at zk, by letting m → ∞ in (2.8), we have ∇Ψ(zk)T dk ≥ 0 which
contradicts (2.7). So, we can find a step-size αk in Step 3 and get the (k +1)-th iteration zk+1 = zk +αkdk

in Step 4. Hence, Algorithm 2.1 is well-defined. ut

3. Global convergence

In the following, we assume ∇Ψ(zk) , 0 for all k ≥ 0, so that Algorithm 2.1 generates an infinite
sequence {zk}. To establish the global convergence, we need the following lemma.

Lemma 3.1. Let {zk} be the sequence generated by Algorithm 2.1. Then one has:
(i) ‖dk‖ ≤

1
2
√
θ
‖H(zk)‖1−

δ
2 for all k ≥ 0;

(ii) lim
k→∞
‖αkdk‖ = 0.
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Proof. For any k ≥ 0, we suppose that the singular value decomposition of H′(zk) is

H′(zk) = UT
k ΣkVk,

where Uk and Vk are orthogonal matrices and Σk = diag(σk
1, ..., σ

k
r , 0, ..., 0) with σk

1 ≥ · · · ≥ σk
r > 0.

Then, by (2.5) we have for any k ≥ 0,

‖dk‖ = ‖[H′(zk)T H′(zk) + µkI]−1H′(zk)T H(zk)‖

=

∥∥∥∥∥VT
k diag

( σk
1

(σk
1)2 + µk

, ...,
σk

r

(σk
r)2 + µk

, 0, ..., 0
)
UkH(zk)

∥∥∥∥∥
≤

1
2
√
µk
‖H(zk)‖,

where the inequality holds because σk
i

(σk
i )2+µk

≤ 1
2
√
µk

for all i = 1, ..., r. This together with µk = θ‖H(zk)‖δ

gives the result (i). Moreover, by (2.6) we have

γ‖αkdk‖
2 ≤ ‖H(zk)‖ − ‖H(zk+1)‖. (3.1)

Since {‖H(zk)‖} is a monotonically decreasing sequence by (2.6), there exists a constant H∗ ≥ 0 such
that lim

k→∞
‖H(zk)‖ = H∗. This together with (3.1) proves the result (ii). ut

Theorem 3.1. Let z∗ be any accumulation point of the sequence {zk} generated by Algorithm 2.1. Then
z∗ is a stationary point of the merit function Ψ(z), i.e., ∇Ψ(z∗) = 0. Moreover, if H′(z∗) is nonsingular,
then H(z∗) = 0 and so z∗ = (x∗, s∗, y∗) is a solution of the wLCP.

Proof. Without loss of generality, we may assume that z∗ is the limit of the subsequence {zk}k∈K where
K ⊂ {0, 1, ...}, i.e, lim

(K3)k→∞
zk = z∗. Then, by the continuity of H and H′,

lim
(K3)k→∞

H(zk) = H(z∗), lim
(K3)k→∞

H′(zk) = H′(z∗),

and consequently

lim
(K3)k→∞

Ψ(zk) = Ψ(z∗) =
1
2
‖H(z∗)‖2, lim

(K3)k→∞
µk = θ‖H(z∗)‖δ,

lim
(K3)k→∞

∇Ψ(zk) = lim
(K3)k→∞

H′(zk)T H(zk) = H′(z∗)T H(z∗) = ∇Ψ(z∗).

Obviously, ∇Ψ(z∗) = 0 when H(z∗) = 0. Now we assume ‖H(z∗)‖ > 0 and will derive a contradiction.
Since {‖H(zk)‖} is a monotonically decreasing sequence, by Lemma 3.1 (i), we have for all k ∈ K,

‖dk‖ ≤
1

2
√
θ
‖H(zk)‖1−

δ
2 ≤

1

2
√
θ
‖H(z0)‖1−

δ
2 .

Thus, {dk}k∈K has a convergent subsequence and we may assume lim
(K13)k→∞

dk = d∗ where K1 ⊂ K. In

the following, we show that d∗ = 0. In fact, if d∗ , 0, then by Lemma 3.1 (ii), we have lim
(K13)k→∞

αk = 0.

Moreover, from Step 3 we have for all k ∈ K1,

‖H(zk + ρ−1αkdk)‖ − ‖H(zk)‖ > −γ‖ρ−1αkdk‖
2.
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Multiplying both sides of this inequality by 1
2

[
‖H(zk + ρ−1αkdk)‖ + ‖H(zk)‖

]
, we have for all k ∈ K1,

Ψ(zk + ρ−1αkdk) − Ψ(zk)
ρ−1αk

> −
1
2
γρ−1αk‖dk‖

2[‖H(zk + ρ−1αkdk)‖ + ‖H(zk)‖
]
. (3.2)

Since Ψ is continuously differentiable at z∗, by letting k → ∞ with k ∈ K1 in (3.2), we have

∇Ψ(z∗)T d∗ ≥ 0. (3.3)

On the other hand, by (2.7) we have

lim
(K13)k→∞

∇Ψ(zk)T dk = ∇Ψ(z∗)T d∗ ≤ 0. (3.4)

So, from (3.3) and (3.4) we have ∇Ψ(z∗)T d∗ = 0, which together with (2.5) gives

(d∗)T [H′(z∗)T H′(z∗) + θ‖H(z∗)‖δI]d∗ = −∇Ψ(z∗)T d∗ = 0.

Since ‖H(z∗)‖ > 0, the matrix H′(z∗)T H′(z∗) + θ‖H(z∗)‖δI is positive definite. Hence, we have d∗ = 0. A
contradiction is derived. Therefore, we have d∗ = 0. Then, by letting k → ∞ with k ∈ K1 in (2.5), we
have

∇Ψ(z∗) = −[H′(z∗)T H′(z∗) + θ‖H(z∗)‖δI]d∗ = 0.

This proves the first result. The second result follows from ∇Ψ(z∗) = H′(z∗)T H(z∗) = 0. We complete
the proof. ut

Theorem 3.2. Let {zk} be the sequence generated by Algorithm 2.1. If {zk} has an isolated accumulation
point z∗, then the whole sequence {zk} converges to z∗.

Proof. By Lemma 3.1 (ii), we have lim
k→∞
‖zk+1−zk‖ = 0. This together with [6, Proposition 8.3.10] proves

the theorem. ut

At the end of this section, we consider a special wLCP which consists in finding vectors x ∈ Rn, s ∈ Rn

such that
(P0 wLCP) x, s ≥ 0, s = Mx + q, xs = w, (3.5)

where q ∈ Rn and M ∈ Rn×n is a P0 matrix, that is, for any ξ ∈ Rn with ξ , 0, there exists an index
i0 ∈ {1, ..., n} such that ξi0 , 0 and ξi0(Mξ)i0 ≥ 0.
When w is chosen to be the zero vector, the P0 wLCP (3.5) reduces to the following standard P0 LCP:

(P0 LCP) x, s ≥ 0, s = Mx + q, 〈x, s〉 = 0,

which has many applications in economics and engineering and has been extensively studied in
literatures (e.g., [11, 12, 24–26]). By using the weighted complementarity function ψc(a, b) defined
by (2.1), we can reformulate the P0 wLCP as the smooth nonlinear equation

H(x, s) =


Mx + q − s
ψw1(x1, s1)

...

ψwn(xn, sn)

 = 0 (3.6)

and apply Algorithm 2.1 to solve it. For the P0 wLCP, we have the following global convergence result.
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Theorem 3.3. Let {(xk, sk)} be the sequence generated by Algorithm 2.1 for solving the nonlinear
equation (3.6). Then any accumulation point (x∗, s∗) of {(xk, sk)} is a solution of the P0 wLCP.

Proof. Since the P0 wLCP is a special case of the wLCP, Theorem 3.1 still holds. So, we have
∇Ψ(x∗, s∗) = H′(x∗, s∗)T H(x∗, s∗) = 0. By (3.6), we have

H′(x, s) =

(
M −I

diag
(
∇xiψ

wi(xi, si)
)

diag
(
∇siψ

wi(xi, si)
) )

, (3.7)

in which ∇xiψ
wi(·, ·) and ∇siψ

wi(·, ·) are given in Lemma 2.1 (ii). Then, it follows from
H′(x∗, s∗)T H(x∗, s∗) = 0 that

MT (Mx∗ + q − s∗) + vec
(
∇xiψ

wi(x∗i , s
∗
i )ψwi(x∗i , s

∗
i )
)

= 0, (3.8)

− (Mx∗ + q − s∗) + vec
(
∇siψ

wi(x∗i , s
∗
i )ψwi(x∗i , s

∗
i )
)

= 0. (3.9)

Now we assume Mx∗ + q − s∗ , 0. Since M is a P0 matrix and so is MT , there exists an index
i0 ∈ {1, ..., n} such that (Mx∗ + q − s∗)i0 , 0 and

(Mx∗ + q − s∗)i0(MT (Mx∗ + q − s∗))i0 ≥ 0. (3.10)

By (3.8) and (3.9), we have

(MT (Mx∗ + q − s∗))i0 = −∇xi0
ψwi0 (x∗i0 , s

∗
i0)ψ

wi0 (x∗i0 , s
∗
i0), (3.11)

(Mx∗ + q − s∗)i0 = ∇si0
ψwi0 (x∗i0 , s

∗
i0)ψ

wi0 (x∗i0 , s
∗
i0), (3.12)

which together with (3.10) gives

− ∇xi0
ψwi0 (x∗i0 , s

∗
i0)∇si0

ψwi0 (x∗i0 , s
∗
i0)(ψ

wi0 (x∗i0 , s
∗
i0))

2 ≥ 0. (3.13)

On the other hand, by Lemma 2.1 (iii), we have

∇xi0
ψwi0 (x∗i0 , s

∗
i0)∇si0

ψwi0 (x∗i0 , s
∗
i0)(ψ

wi0 (x∗i0 , s
∗
i0))

2 ≥ 0. (3.14)

From (3.13) and (3.14) it holds that

∇xi0
ψwi0 (x∗i0 , s

∗
i0)∇si0

ψwi0 (x∗i0 , s
∗
i0)(ψ

wi0 (x∗i0 , s
∗
i0))

2 = 0.

This together with Lemma 2.1 (iv) gives ψwi0 (x∗i0 , s
∗
i0) = 0. Then, by (3.12) we have (Mx∗+ q− s∗)i0 = 0

which contradicts the choice of the index i0 such that (Mx∗ + q − s∗)i0 , 0. Hence, Mx∗ + q − s∗ = 0.
Furthermore, by (3.8) we have ∇xiψ

wi(x∗i , s
∗
i )ψwi(x∗i , s

∗
i ) = 0 which together with Lemma 2.1 (iv) yields

ψwi(x∗i , s
∗
i ) = 0 for all i = 1, ..., n. Therefore, H(x∗, s∗) = 0 and (x∗, s∗) is a solution of the P0 wLCP. ut
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4. Local sub-quadratic convergence

Let H(z) be given in (2.2). Denote

Z∗ := {z ∈ R2n+m|H(z) = 0}.

In this section, we assume that the whole sequence {zk} generated by Algorithm 2.1 converges to
some point z∗ ∈ Z∗. Then lim

k→∞
H(zk) = H(z∗) = 0. Now we make the following assumption.

Assumption 4.1. H(z) provides a local error bound on some neighbourhood of z∗, i.e., there exist
constants ξ > 0 and ε > 0 such that

‖H(z)‖ ≥ ξdist(z,Z∗), ∀ z ∈ N(z∗, ε) = {z ∈ R2n+m|‖z − z∗‖ ≤ ε}. (4.1)

As it is well-known, Assumption 4.1 is the local error bound condition which is weaker than the
nonsingularity condition. It is worth pointing out that, to obtain the local quadratic convergence,
classical Levenberg-Marquardt methods (e.g., [7–9]) also need to assume that the Jacobian is
Lipschitz continuous on the set N(z∗, ε). In the following, we show that this assumption holds for our
method.

Lemma 4.1. The Jacobian H′(z) given in (2.3) is Lipschitz continuous on R2n+m, i.e., there exists a
constant M > 0 such that

‖H′(z) − H′(z̃)‖ ≤ M‖z − z̃‖, ∀ z, z̃ ∈ R2n+m. (4.2)

Proof. Obviously, we only need to prove that the gradient ∇ψc(a, b) given in Lemma 2.1 (ii) is Lipschitz
continuous on R2. First, by [5, Lemma 3.1], ∇ψc(a, b) is Lipschitz continuous on R2 when c = 0. Now
we consider c > 0. Then ψc(a, b) is twice continuously differentiable at any (a, b) ∈ R2 with

∇2ψc(a, b) =

[
∇2

aaψ
c(a, b) ∇2

abψ
c(a, b)

∇2
baψ

c(a, b) ∇2
bbψ

c(a, b)

]
, (4.3)

where

∇2
aaψ

c(a, b) =

(
−

b2 + 2c

(
√

a2 + b2 + 2c)3

)
φc(a, b) +

(
1 −

a
√

a2 + b2 + 2c

)2

,

∇2
bbψ

c(a, b) =

(
−

a2 + 2c

(
√

a2 + b2 + 2c)3

)
φc(a, b) +

(
1 −

b
√

a2 + b2 + 2c

)2

,

∇2
abψ

c(a, b) = ∇2
baψ

c(a, b) =
ab

(
√

a2 + b2 + 2c)3
φc(a, b)

+

(
1 −

a
√

a2 + b2 + 2c

)(
1 −

b
√

a2 + b2 + 2c

)
.

Since
b2 + 2c

(
√

a2 + b2 + 2c)3
≤

1
√

a2 + b2 + 2c
,

AIMS Mathematics Volume 7, Issue 5, 8914–8932.



8924

a2 + 2c

(
√

a2 + b2 + 2c)3
≤

1
√

a2 + b2 + 2c
,

|ab|

(
√

a2 + b2 + 2c)3
≤

1

2
√

a2 + b2 + 2c
,

also notice that
|φc(a, b)| ≤ |a + b| +

√
a2 + b2 + 2c ≤ (

√
2 + 1)

√
a2 + b2 + 2c,

we have ∣∣∣∣∣ b2 + 2c

(
√

a2 + b2 + 2c)3
φc(a, b)

∣∣∣∣∣ ≤ √2 + 1,

∣∣∣∣∣ a2 + 2c

(
√

a2 + b2 + 2c)3
φc(a, b)

∣∣∣∣∣ ≤ √2 + 1,

∣∣∣∣∣ ab

(
√

a2 + b2 + 2c)3
φc(a, b)

∣∣∣∣∣ ≤
√

2 + 1
2

.

Moreover, it is clear that

0 ≤ 1 −
a

√
a2 + b2 + 2c

≤ 2, 0 ≤ 1 −
b

√
a2 + b2 + 2c

≤ 2.

Thus, we have ∣∣∣∣∣∇2
aaψ

c(a, b)
∣∣∣∣∣ ≤ √2 + 5,

∣∣∣∣∣∇2
bbψ

c(a, b)
∣∣∣∣∣ ≤ √2 + 5,∣∣∣∣∣∇2

abψ
c(a, b)

∣∣∣∣∣ =

∣∣∣∣∣∇2
baψ

c(a, b)
∣∣∣∣∣ ≤
√

2 + 9
2

.

This implies that there exists a constant C > 0 independent of (a, b) such that

‖∇2ψc(a, b)‖ ≤ C, ∀ (a, b) ∈ R2.

Then, by the Mean-Value Theorem, we have

‖∇ψc(a, b) − ∇ψc(ã, b̃)‖ ≤ C‖(a, b) − (ã, b̃)‖

holds for all (a, b), (ã, b̃) ∈ R2. The proof is completed. ut

By Lemma 4.1, we can directly have

‖H(u) − H(v) − H′(v)(u − v)‖ ≤ M‖u − v‖2, ∀ u, v ∈ N(z∗, ε), (4.4)

and there exists a constant L > 0 such that

‖H(u) − H(v)‖ ≤ L‖u − v‖, ∀ u, v ∈ N(z∗, ε). (4.5)

In the following, we denote z̄k as the vector inZ∗ that satisfies

‖zk − z̄k‖ = dist(zk,Z∗).
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Lemma 4.2. Let {zk} be the sequence generated by Algorithm 2.1. If Assumption 4.1 holds, then for all
sufficiently large k,

‖H(zk) + H′(zk)dk‖ ≤
√

M2 + θLδdist(zk,Z∗)1+ δ
2 , (4.6)

‖dk‖ ≤

√
M2 + θLδ

θξδ
dist(zk,Z∗). (4.7)

Proof. Notice that for all sufficiently large k,

‖z̄k − z∗‖ ≤ ‖zk − z̄k‖ + ‖zk − z∗‖ ≤ 2‖zk − z∗‖,

which implies that z̄k sufficiently close to z∗. So, by (4.5), for all sufficiently large k,

µk = θ‖H(zk)‖δ = θ‖H(zk) − H(z̄k)‖δ ≤ θLδ‖zk − z̄k‖δ. (4.8)

For any k ≥ 0, we consider the following optimization problem:

min
d∈R2n+m

ϕk(d) := ‖H(zk) + H′(zk)d‖2 + µk‖d‖2. (4.9)

Then, the search direction dk generated by (2.5) is the solution of (4.9) because ϕk(d) is a strictly
convex quadratic function and dk is a stationary point of ϕk(d). Hence, for all sufficiently large k,
by (4.4) and (4.8) we have

ϕk(dk) ≤ ϕk(z̄k − zk)
= ‖H(zk) + H′(zk)(z̄k − zk)‖2 + µk‖zk − z̄k‖2

≤ M2‖zk − z̄k‖4 + θLδ‖zk − z̄k‖2+δ

≤ (M2 + θLδ)‖zk − z̄k‖2+δ

= (M2 + θLδ)dist(zk,Z∗)2+δ. (4.10)

This together with (4.9) yields

‖H(zk) + H′(zk)dk‖ ≤
√
ϕk(dk) ≤

√
M2 + θLδdist(zk,Z∗)1+ δ

2 .

Moreover, for all sufficiently large k, by Assumption 4.1, we have

µk = θ‖H(zk)‖δ ≥ θξδdist(zk,Z∗)δ,

which together with (4.9) and (4.10) gives

‖dk‖ ≤

√
ϕk(dk)
µk

≤

√
M2 + θLδ

θξδ
dist(zk,Z∗).

The proof is completed. ut

Theorem 4.1. Let {zk} be the sequence generated by Algorithm 2.1. If Assumption 4.1 holds, then for
all sufficiently large k, we have

zk+1 = zk + dk, (4.11)

dist(zk+1,Z∗) = O(dist(zk,Z∗)1+ δ
2 ). (4.12)
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Proof. By (4.7), for all sufficiently large k,

‖zk + dk − z∗‖ ≤ ‖zk − z∗‖ + ‖dk‖ ≤ c1‖zk − z∗‖, (4.13)

where c1 := 1 +

√
M2+θLδ
θξδ

. This implies that zk + dk sufficiently close to z∗. Hence, by (4.4), for all
sufficiently large k,

‖H(zk + dk) − H(zk) − H′(zk)dk‖ ≤ M‖dk‖
2, (4.14)

which together with (4.6) and (4.7) gives

‖H(zk + dk)‖ ≤ ‖H(zk) + H′(zk)dk‖ + M‖dk‖
2

≤
√

M2 + θLδdist(zk,Z∗)1+ δ
2 +

M(M2 + θLδ)
θξδ

dist(zk,Z∗)2

≤ c2dist(zk,Z∗)1+ δ
2 , (4.15)

where c2 :=
√

M2 + θLδ +
M(M2+θLδ)

θξδ
. Thus, by (4.1) and (4.15), for all sufficiently large k,

dist(zk + dk,Z
∗) ≤

1
ξ
‖H(zk + dk)‖ ≤

c2

ξ
dist(zk,Z∗)1+ δ

2 . (4.16)

Let z̃k be the vector in Z∗ that satisfies ‖zk + dk − z̃k‖ = dist(zk + dk,Z
∗). Then, by (4.13) and (4.16),

for all sufficiently large k,

‖z̃k − z∗‖ ≤ ‖zk + dk − z̃k‖ + ‖zk + dk − z∗‖

= dist(zk + dk,Z
∗) + ‖zk + dk − z∗‖

≤
c2

ξ
dist(zk,Z∗)1+ δ

2 + c1‖zk − z∗‖

≤
(c2

ξ
+ c1

)
‖zk − z∗‖,

which yields z̃k sufficiently close to z∗. So, by (4.1), (4.5) and (4.16), also notice that H(z̃k) = 0 as
z̃k ∈ Z∗, for all sufficiently large k,

‖H(zk + dk)‖ = ‖H(zk + dk) − H(z̃k)‖
≤ L‖zk + dk − z̃k‖

= Ldist(zk + dk,Z
∗)

≤
Lc2

ξ
dist(zk,Z∗)1+ δ

2

≤
Lc2

ξ2 ‖H(zk)‖1+ δ
2 . (4.17)

Moreover, by (4.1) and (4.7), for all sufficiently large k,

‖dk‖
2 ≤

M2 + θLδ

θξδ
dist(zk,Z∗)2 ≤

M2 + θLδ

θξδ+2 ‖H(zk)‖2. (4.18)
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Hence, by (4.17) and (4.18) we have

lim
k→∞

‖H(zk + dk)‖ + γ‖dk‖
2

‖H(zk)‖
= 0,

which implies that for all sufficiently large k,

‖H(zk + dk)‖ + γ‖dk‖
2 ≤ ‖H(zk)‖.

This shows that the step-size αk = 1 is accepted in Step 3 for all sufficiently large k. Consequently, for
all sufficiently large k, we have zk+1 = zk + dk which together with (4.16) prove the theorem. ut

By Theorem 4.1, similarly as the proof of [19, Theorem 5.2], we can obtain the following sub-
quadratic convergence property.

Theorem 4.2. Let {zk} be the sequence generated by Algorithm 2.1. If Assumption 4.1 holds, then one
has

‖zk+1 − z∗‖ = O(‖zk − z∗‖1+ δ
2 ).

5. Numerical results

In this section, we report some numerical results of Algorithm 2.1. All experiments are carried on
a PC with CPU of Inter(R) Core(TM)i7-7700 CPU @ 3.60 GHz and RAM of 8.00GB. The codes are
written in MATLAB and run in MATLAB R2018a environment. The parameters used in Algorithm 2.1
are chosen as θ = 10−4, ρ = 0.8, γ = 10−4, δ = 1.

We apply Algorithm 2.1 to solve the wLCP (1.1) in which

P =

(
A
M

)
, Q =

(
0
−I

)
, R =

(
0
−AT

)
, d =

(
b
− f

)
, (5.1)

where A ∈ Rm×n is a full row rank matrix with m < n, M ∈ Rn×n, b ∈ Rm and f ∈ Rn. This example
comes from [14]. For the purposes of comparison, we also apply the the damped Gauss-Newton
method studied by Tang and Zhou [19] to solve this test problem. In our experiments, we test the
following two class of wLCPs.

(The monotone wLCP) We choose A = randn(m, n) with the rank of A being m and
M = BBT/‖BBT ‖ with B = rand(n, n). Then we choose x̂ = rand(n, 1), f = rand(n, 1) and set
b := Ax̂, ŝ := Mx̂ + f and w := x̂ŝ. This wLCP is monotone. For each problem with sizes n(= 2m), we
generate ten instances and solve them by using the following three starting points:

(i) x0 = s0 = (1, ..., 1)T , y0 = (0, ..., 0)T ;
(ii) x0 = s0 = (1, 0, ..., 0)T , y0 = (0, ..., 0)T ; (iii) x0 = rand(n, 1), s0 = rand(n, 1), y0 = rand(m, 1).
We use ‖H(zk)‖ ≤ 10−5 as the stopping criterion. Numerical results are listed in Table 1 where

SLMM denotes the smooth Levenberg-Marquardt method studied in this paper, DGNM denotes the
damped Gauss-Newton method studied in [19], SP denotes the starting point, AIT and ACPU denote the
average number of iterations and the average CPU time in seconds respectively. From Table 1, we can
see that SLMM has the advantage over DGNM, especially for large scale test problems.

(The nonmonotone wLCP) We choose M = B1/‖B1‖ − B2/‖B2‖ with B1 = rand(n, n) and B2 =

rand(n, n). The matrix A and vectors b, f ,w are generated by the same way as before. Since the
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matrix M is not symmetric positive semidefinite, this class of wLCP may be nonmonotone. For each
problem with sizes n(= 2m), we also generate ten instances and solve them by using three starting
points as before. Moreover, we use ‖H(zk)‖ ≤ 10−5 and iter < 50 as the stopping criterion where iter
denotes the number of iterations. Numerical results are listed in Table 2, where ∗ stands for that the
method fails to solve some instances as the iteration number is grater than 50 and the average is based
on the successful instances through our numerical reports. From Table 2, we can see that, although
both SLMM and DGNM can be applied to solve nonmonotone wLCPs, the former has better numerical
performance than the latter.

Table 1. Numerical results of solving the monotone wLCP.

SLMM DGNM
SP n AIT ACPU AIT ACPU
(i) 200 8.9 0.08 6.5 0.07

400 9.0 0.50 8.0 0.48
600 9.0 1.13 9.0 1.20
800 9.5 2.55 9.6 2.59
1000 10.0 4.39 10.3 4.78
1200 10.0 6.86 11.0 7.80
1400 10.0 10.28 12.0 12.86
1600 10.0 14.23 12.3 18.08
1800 10.0 19.29 13.0 25.58
2000 10.0 26.40 13.9 35.92

(ii) 200 12.0 0.10 8.3 0.08
400 12.0 0.64 10.1 0.58
600 12.0 1.57 12.0 1.65
800 12.0 3.06 13.3 3.51
1000 12.0 5.50 15.0 6.63
1200 12.2 9.23 16.3 11.55
1400 12.4 12.82 18.0 19.75
1600 12.9 18.67 19.1 28.52
1800 13.0 25.22 20.6 41.08
2000 13.0 32.59 21.8 56.01

(iii) 200 10.4 0.11 7.8 0.07
400 11.0 0.54 9.0 0.45
600 11.0 1.39 10.1 1.37
800 11.1 2.86 11.7 3.15
1000 11.0 4.99 12.3 5.69
1200 11.1 7.57 13.7 9.78
1400 11.0 11.05 14.2 15.34
1600 11.5 15.99 15.5 22.71
1800 11.8 23.89 16.1 32.25
2000 11.9 30.73 17.0 45.10

AIMS Mathematics Volume 7, Issue 5, 8914–8932.



8929

Table 2. Numerical results of solving the nonmonotone wLCP.

SLMM DGNM
SP n AIT ACPU AIT ACPU
(i) 200 9.0 0.08 9.0∗ 0.08

400 9.2 0.62 11.4∗ 1.12
600 9.3 1.43 12.1 2.12
800 9.7 3.05 13.3∗ 5.50
1000 10.0 4.44 14.6 6.70
1200 10.5 7.78 15.8 11.72
1400 10.3 13.19 17.1 19.08
1600 10.3 18.23 18.2 28.91
1800 10.0 24.32 18.9 43.12
2000 10.2 27.42 20.1 57.39

(ii) 200 11.4∗ 0.12 8.8∗ 0.07
400 12.1∗ 1.42 10.7∗ 1.03
600 12.0 3.76 11.1 3.52
800 12.4 4.59 12.0∗ 5.30
1000 12.3 7.97 13.2 8.70
1200 12.3 12.14 14.1 15.72
1400 12.2 18.50 15.0 34.08
1600 13.3 30.11 15.5 45.08
1800 12.1 38.27 16.4 50.12
2000 12.3 48.22 17.1 66.39

(iii) 200 10.0 0.15 8.3 0.12
400 10.0 0.65 9.7 0.59
600 10.3 3.45 11.1∗ 3.69
800 10.4 4.19 12.1 5.91
1000 10.6 8.60 12.7 9.79
1200 11.0 12.46 13.7 14.18
1400 10.9 17.84 14.1 21.96
1600 11.0 20.61 15.1 25.85
1800 11.0 25.55 15.6 40.53
2000 11.0 32.49 16.2 49.71

6. Conclusions

Based on a smooth weighted complementarity function, we reformulated the wLCP as a smooth
nonlinear equation and proposed a Levenberg-Marquardt method to solve it. The proposed method is
well-defined and it is globally convergent without any additional condition. Moreover, we proved that
the proposed method has local sub-quadratic convergence rate under the local error bound condition
which is weaker than the nonsingularity condition. Numerical results show that our method is very
effective for solving monotone and nonmonotone wLCPs. In Algorithm 2.1, the Eq (2.5) is solved
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exactly in each iteration which maybe expensive for large-scale wLCPs. As a future research issue,
it is worth investigating smooth inexact Levenberg-Marquardt method for solving wLCPs. Moreover,
Wang and Fan [20] lately established the local convergence rate of Levenberg-Marquardt method under
the Hölderian local error bound condition which is more general than Assumption 4.1 in this paper.
Thus, another interesting issue is whether Algorithm 2.1 in this paper has local fast convergence rate
under the Hölderian local error bound condition.
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