We apply CRM based on an alternative FPT to investigate the approximation of a $ \Delta $-Hilfer FDE. In comparison to the Picard method, we show that the CRM has a better error estimate and economic solution.
Citation: Safoura Rezaei Aderyani, Reza Saadati, Donal O'Regan, Thabet Abdeljawad. UHML stability of a class of $ \Delta $-Hilfer FDEs via CRM[J]. AIMS Mathematics, 2022, 7(4): 5910-5919. doi: 10.3934/math.2022328
We apply CRM based on an alternative FPT to investigate the approximation of a $ \Delta $-Hilfer FDE. In comparison to the Picard method, we show that the CRM has a better error estimate and economic solution.
[1] | R. Almeida, D. Tavares, D. F. M. Torres, The variable-order fractional calculus of variations, Springer Briefs in Applied Sciences and Technology, Springer, Cham, 2019. https://doi.org/10.1007/978-3-319-94006-9 |
[2] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers-Mittag-Leffler stability results of $ \Psi$-Hilfer nonlocal Cauchy problem, Rendiconti del Circolo Matematico di Palermo Series 2, 70 (2021), 57–77. https://doi.org/10.1007/s12215-020-00484-8 doi: 10.1007/s12215-020-00484-8 |
[3] | M. A. Almalahi, S. K. Panchal, $ E_{\alpha}$-Ulam-Hyers stability result for $\psi$-Hilfer Nonlocal Fractional Differential Equation, Discontinuity Nonlinearity Complexity, 3 (2014), 1–6. |
[4] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, $\psi$-Hilfer Fractional Functional Differential Equation by Picard Operator Method, J. Appl. Nonlinear Dyn., 9 (2020), 685–702. https://doi.org/10.5890/JAND.2020.12.011 doi: 10.5890/JAND.2020.12.011 |
[5] | M. Janfada, G. Sadegh, Stability of the Volterra integrodifferential equation, Folia Math., 18 (2013), 11–20. |
[6] | E. Oliveira, J. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Result Math., 37 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z |
[7] | J. Sousa, O. Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\Psi$-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), 1–21. https://doi.org/10.1007/s11784-018-0587-5 doi: 10.1007/s11784-018-0587-5 |
[8] | J. Wang, X. Li, A uniform method to Ulam-Hyers stability for some linear fractional equations, Mediterr J. Math., 13 (2016), 625–635. https://doi.org/10.1007/s00009-015-0523-5 doi: 10.1007/s00009-015-0523-5 |
[9] | J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. https://doi.org/10.1090/S0002-9904-1968-11933-0 doi: 10.1090/S0002-9904-1968-11933-0 |
[10] | L. Cădariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., 2008 (2008), 749392. https://doi.org/10.1155/2008/749392 doi: 10.1155/2008/749392 |
[11] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63 |
[12] | M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62 (2017), 27–38. https://doi.org/10.24193/subbmath.2017.0003 doi: 10.24193/subbmath.2017.0003 |
[13] | C. J. Sousa, E. Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. https://doi.org/10.1016/j.aml.2018.01.016 doi: 10.1016/j.aml.2018.01.016 |
[14] | M. Benchohra, J. E. Lazreg, On stability for nonlinear implicit fractional differential equations, Le Math., 70 (2015), 49–61. |
[15] | D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0 |
[16] | S. Abbas, M. Benchohra, L. E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differntial equations of Hilfer-Hadamard type, Adv. Differ. Equ., 2017 (2017), 180. https://doi.org/10.1186/s13662-017-1231-1 doi: 10.1186/s13662-017-1231-1 |
[17] | Y. Zhou, Existence and uniqueness of solutions for a system of fractional differential equations, J. Frac. Calc. Appl. Anal., 12 (2009), 195–204. |
[18] | J. Huang, Y. Li, Hyers-Ulam stability of delay differential equations of first order, Math. Nachr., 289 (2016), 60–66. https://doi.org/10.1002/mana.201400298 doi: 10.1002/mana.201400298 |
[19] | L. D. Long, H. T. K. Van, H. T. K. Binh, R. Saadati, On backward problem for fractional spherically symmetric diffusion equation with observation data of nonlocal type, Adv. Differ. Equ., 2021 (2021), 445. https://doi.org/10.1186/s13662-021-03603-6 doi: 10.1186/s13662-021-03603-6 |
[20] | R. Chaharpashlou, A. Atangana, R. Saadati, On the fuzzy stability results for fractional stochastic volterra integral equation, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3529–3539. https://doi.org/10.3934/dcdss.2020432 doi: 10.3934/dcdss.2020432 |
[21] | J. Wang, Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63 (2014), 1181–1190. https://doi.org/10.1080/02331934.2014.906597 doi: 10.1080/02331934.2014.906597 |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Equations, Elsevier, Amsterdam, 2006. |
[23] | E. Capelas de Olivera, C. D. Vanterler, J. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z |
[24] | K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4 |
[25] | S. Rezaei Aderyani, R. Saadati, M. Feckan, The Cadariu–Radu Method for Existence, Uniqueness and Gauss Hypergeometric Stability of W-Hilfer Fractional Differential Equations, Mathematics, 9 (2021), 1408. https://doi.org/10.3390/math9121408 doi: 10.3390/math9121408 |
[26] | C. D. Vanterler, J. Sousa, E. Capelas de Olivera, On the $ \psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[27] | E. Graily, S. M. Vaezpour, R. Saadati, Y. J. Cho, Generalization of fixed point theorems in ordered metric spaces concerning generalized distance, Fixed Point Theory Appl., 2011 (2011), 30. https://doi.org/10.1186/1687-1812-2011-30 doi: 10.1186/1687-1812-2011-30 |
[28] | S. Shakeri, L. J. B. Ciric, R. Saadati, Common fixed point theorem in partially ordered $L$-fuzzy metric spaces, Fixed Point Theory Appl., 2010 (2010), 125082. https://doi.org/10.1155/2010/125082 doi: 10.1155/2010/125082 |
[29] | L. Ciric, M. Abbas, B. Damjanovic, Common fuzzy fixed point theorems in ordered metric spaces, Math. Comput. Modell., 53 (2011), 1737–1741. https://doi.org/10.1016/j.mcm.2010.12.050 doi: 10.1016/j.mcm.2010.12.050 |
[30] | Y. J. Cho, R. Saadati, Lattictic non-Archimedean random stability of ACQ functional equation, Adv. Differ. Equ., 2011 (2011), 31. https://doi.org/10.1186/1687-1847-2011-31 doi: 10.1186/1687-1847-2011-31 |
[31] | D. Mihet, R. Saadati, S. M. Vaezpour, The stability of an additive functional equation in Menger probabilistic $\phi$-normed spaces, Math. Slovaca, 61 (2011), 817–826. https://doi.org/10.2478/s12175-011-0049-7 doi: 10.2478/s12175-011-0049-7 |
[32] | Y. J. Cho, C. Park, T. M. Rassias, R. Saadati, Stability of functional equations in Banach algebras, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-18708-2 |
[33] | D. Baleanu, R. Saadati, J. Sousa, The stability of the fractional Volterra integro-differential equation by means of $\Psi$-Hilfer operator revisited, Math. Methods Appl. Sci., 44 (2021), 10905–10911. https://doi.org/10.1002/mma.7348 doi: 10.1002/mma.7348 |
[34] | S. Rezaei Aderyani, R. Saadati, Best approximations of the $\phi$-Hadamard fractional Volterra integro-differential equation by matrix valued fuzzy control functions, Adv. Differ. Equ., 2021 (2021), 154. https://doi.org/10.1186/s13662-021-03305-z doi: 10.1186/s13662-021-03305-z |
[35] | R. Chaharpashlou, R. Saadati, Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space, Adv. Differ. Equ., 2021 (2021), 118. https://doi.org/10.1186/s13662-021-03275-2 doi: 10.1186/s13662-021-03275-2 |
[36] | R. Chaharpashlou, R. Saadati, A. Atangana, Ulam-Hyers-Rassias stability for nonlinear $\Psi$-Hilfer stochastic fractional differential equation with uncertainty, Adv. Differ. Equ., 2020 (2020), 339. https://doi.org/10.1186/s13662-020-02797-5 doi: 10.1186/s13662-020-02797-5 |
[37] | N. Celik, A. R. Seadawy, Y. Saglam Ozkan, E. Yasar, A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws, Chaos Solitons Fractals, 143 (2021), 110486. https://doi.org/10.1016/j.chaos.2020.110486 doi: 10.1016/j.chaos.2020.110486 |