Research article Special Issues

Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $

  • Received: 15 July 2021 Revised: 14 December 2021 Accepted: 27 December 2021 Published: 12 January 2022
  • MSC : 19C99, 19F15

  • In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.

    Citation: Daochang Zhang, Chaochao Sun. Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $[J]. AIMS Mathematics, 2022, 7(4): 5920-5924. doi: 10.3934/math.2022329

    Related Papers:

  • In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.



    加载中


    [1] J. Browkin, On the $p$-rank of the tame kernel of algebraic number fields, J. Reine Angew. Math., 432 (1992), 135–149. https://doi.org/10.1515/crll.1992.432.135 doi: 10.1515/crll.1992.432.135
    [2] J. Coates, W. Sinnott, An analogue of Stickelberger's theorem for the higher $K$-groups, Invent. Math., 24 (1974), 149–161. https://doi.org/10.1007/BF01404303 doi: 10.1007/BF01404303
    [3] H. R. Qin, Q. Q. Shen, A density theorem and its applicition, Sci. China Math., 58 (2015), 1621–1626. https://doi.org/10.1007/s11425-015-4999-z doi: 10.1007/s11425-015-4999-z
    [4] F. Keune, On the structures of the $K_2$ of the ring of integers in a number field, $K$-Theory, 2 (1989), 625–645. https://doi.org/10.1007/BF00535049 doi: 10.1007/BF00535049
    [5] M. Kurihara, Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbb{Z}$, Comopositio Math., 81 (1992), 223–236.
    [6] R. Osburn, Vanishing of eigenspace and cyclotomic fields, Int. Math. Res. Notices, 2005 (2005), 1195–1202. https://doi.org/10.1155/IMRN.2005.1195 doi: 10.1155/IMRN.2005.1195
    [7] K. A. Ribet, A modular construction of unramified $p$-extensions of $\mathbb{Q}(\zeta_p)$, Invent. Math., 34 (1976), 151–162. https://doi.org/10.1007/BF01403065 doi: 10.1007/BF01403065
    [8] L. Taelman, A Herbrand-Ribet theorem for function fields, Invent. Math., 188 (2012), 253–275. https://doi.org/10.1007/s00222-011-0346-3 doi: 10.1007/s00222-011-0346-3
    [9] J. Tate, Relations between $K_2$ and Galois cohomology, Invent. Math., 36 (1976), 257–274. https://doi.org/10.1007/BF01390012 doi: 10.1007/BF01390012
    [10] L. C. Washington, Introduction to cyclotomic fields, 2 Eds., New York: Springer, 1997.
    [11] C. Weibel, Algebraic $K$-theory of rings of integers in local and gobal fields, In: E. M. Friedlander, D. R. Grayson, Handbook of $K$-theory, Berlin, Heidelberg: Springer, 2005.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1125) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog