In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.
Citation: Daochang Zhang, Chaochao Sun. Remarks on the $ K_2 $ group of $ \mathbb{Z}[\zeta_p] $[J]. AIMS Mathematics, 2022, 7(4): 5920-5924. doi: 10.3934/math.2022329
In this paper, our aim is to obtain the $ K_2 $ analogues of both the Herbrand-Ribet theorem and the Vandiver's conjecture.
[1] | J. Browkin, On the $p$-rank of the tame kernel of algebraic number fields, J. Reine Angew. Math., 432 (1992), 135–149. https://doi.org/10.1515/crll.1992.432.135 doi: 10.1515/crll.1992.432.135 |
[2] | J. Coates, W. Sinnott, An analogue of Stickelberger's theorem for the higher $K$-groups, Invent. Math., 24 (1974), 149–161. https://doi.org/10.1007/BF01404303 doi: 10.1007/BF01404303 |
[3] | H. R. Qin, Q. Q. Shen, A density theorem and its applicition, Sci. China Math., 58 (2015), 1621–1626. https://doi.org/10.1007/s11425-015-4999-z doi: 10.1007/s11425-015-4999-z |
[4] | F. Keune, On the structures of the $K_2$ of the ring of integers in a number field, $K$-Theory, 2 (1989), 625–645. https://doi.org/10.1007/BF00535049 doi: 10.1007/BF00535049 |
[5] | M. Kurihara, Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbb{Z}$, Comopositio Math., 81 (1992), 223–236. |
[6] | R. Osburn, Vanishing of eigenspace and cyclotomic fields, Int. Math. Res. Notices, 2005 (2005), 1195–1202. https://doi.org/10.1155/IMRN.2005.1195 doi: 10.1155/IMRN.2005.1195 |
[7] | K. A. Ribet, A modular construction of unramified $p$-extensions of $\mathbb{Q}(\zeta_p)$, Invent. Math., 34 (1976), 151–162. https://doi.org/10.1007/BF01403065 doi: 10.1007/BF01403065 |
[8] | L. Taelman, A Herbrand-Ribet theorem for function fields, Invent. Math., 188 (2012), 253–275. https://doi.org/10.1007/s00222-011-0346-3 doi: 10.1007/s00222-011-0346-3 |
[9] | J. Tate, Relations between $K_2$ and Galois cohomology, Invent. Math., 36 (1976), 257–274. https://doi.org/10.1007/BF01390012 doi: 10.1007/BF01390012 |
[10] | L. C. Washington, Introduction to cyclotomic fields, 2 Eds., New York: Springer, 1997. |
[11] | C. Weibel, Algebraic $K$-theory of rings of integers in local and gobal fields, In: E. M. Friedlander, D. R. Grayson, Handbook of $K$-theory, Berlin, Heidelberg: Springer, 2005. |