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1. Introduction

It is well known that the Herbrand-Ribet theorem is about the relation between the p-th class group
of cyclotomic field Q(ζp) and the Bernoulli number.

We introduce some notations. Let F = Q(ζp) be the cyclotomic field, and

G = Gal(Q(ζp)/Q) = {σa : 1 ≤ a ≤ p − 1}

be the Galois group, where σa(ζp) = ζa
p. Let ω be the Teichmuller character of group (Z/p)×, that is,

a character ω : (Z/p)× → Z×p such that for a ∈ Z, (a, p) = 1. Then ω(a)p−1 = 1 and ω(a) ≡ a mod p.
For the group ring Zp[G], where Zp is the p-adic integer ring, the idempotents are

εi =
1

p − 1

p−1∑
a=1

ωi(a)σ−1
a , 0 ≤ i ≤ p − 2.

Let A be the p-part of Cl(F), which is the class group of F. Then A =
⊕p−2

i=0 Ai, where Ai = εiA.
The Herbrand theorem states that if p divides the numerator of the Bernoulli number Bp−i, then

εiA , 0. In 1976, Ribet [7] proved the converse of the Herbrand’s theorem. So the Herbrand-Ribet
theorem is as follow.

Theorem 1.1. Let i be an odd integer with 3 ≤ i ≤ p − 2. If p divides the numerator of the Bernoulli
number Bp−i, then εiA , 0.
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The Herbrand theorem is obtained by the properties of the Stickelberger element and the p-adic
L-function. In [8], the Herbrand-Ribet theorem for function fields was obtained. In addition, Coats and
Sinnott [2] proved an analogue of Stickelberger’s theorem for the K2 groups.

Throughout this paper, inspired by the above results, we obtain respectively the K2 analogue of
Herbrand-Ribet theorem and the K2 analogue of the Vandiver conjecture.

2. K2 analogue of Herbrand-Ribet theorem

Let S be a finite set of places of F = Q(ζp) including the archimedean ones. Let OS denote the ring
of S -integers in F, i.e., the ring of all a ∈ F such that v(a) ≥ 0 for each place v < S . Then

0→ ker dS → K2F
dS

−−→
∐
v<S

κ∗(v)→ 0.

By Quillen’s localization sequence, we have the isomorphism ker dS ' K2(OS ), which is moreover a
G-isomorphism if S is stable under G (see [9, P. 271]).

Let K2(Z[ζp]) be the K2 group of the ring of algebraic integers Z[ζp], and let C be the p-part of
K2(Z[ζp]). Then we have C =

⊕p−2
i=0 Ci, Ci = εiC.

Lemma 2.1. There exist G-isomorphisms:

ε jA/p ' ε j+1C/p, 0 ≤ j ≤ p − 3.

Proof. We note an isomorphism [4]
µp ⊗ A ' C/p, (2.1)

where G acts on µp ⊗ A by the formula

(ζ ⊗ x)ρ = ζρ ⊗ xρ, for ζ ∈ µp, ρ ∈ G, x ∈ A.

We claim that the above isomorphism is a G-isomorphism. Let S be a set of the places of Q(ζp)
consisting of the archimedean ones and the finite ones above p. Let S c denote the set of complex
places. Then there is a natural exact sequence (see [9, Theorem 6.2])

0→ µp ⊗Cl(OS )→ K2OS /p
hS

1
−→ (

∐
v∈S−S c

µp)0 → 0, (2.2)

where (
∐
µp)0 denotes the subgroup of the direct sum consisting of the elements z = (zv) such that∑

zv = 0. The map hS
1 is that induced by the l-th power norm residue symbols for v ∈ S − S c. Since S

is stable under G, the above exact sequence is sequence of G-modules with G-homomorphisms(see [9,
P. 271]). By [11, Theorem 73], C and the p-part of K2(Z[ζp, 1/p]) are equal to H2

ét(Z[ζp, 1/p],Zp(2)).
Since pZ[ζp] = (1 − ζp)p−1, the p-part of Cl(OS ) is equal to A. Moreover, the fourth term in (2.2) is 0
(see [11, Example 5]), we get that (2.1) is a G-isomorphism.

Then we consider the following homomorphism

δ : A→ µp ⊗ A, x 7→ ζp ⊗ x.
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Here, δ is not a homomorphism of G-modules. The kernel of δ is pA, so we get an isomorphism

δ : A/pA � µp ⊗ A. (2.3)

Next we give the explicit description of δ under the Galois group action. For z := ζpn , we have
σa(z) = zω(a) (see [1, Lemma 3.3]), so there is

σa(δx) = σa(ζp) ⊗ σax = ζω(a)
p ⊗ σax = ω(a) · δ(σa(x)).

Therefore,

ζp ⊗ ε jx = ζp ⊗
( 1

p − 1

p−1∑
a=1

ω j(a)σ−1
a (x)

)
=

1
p − 1

p−1∑
a=1

ω( j+1)(a)σ−1
a (ζp ⊗ x)

= ε j+1(ζp ⊗ x).

Hence
δ(ε jx) = ζp ⊗ ε jx = ε j+1(ζp ⊗ x) = ε j+1δ(x). (2.4)

By (2.4), the action of idempotents ε j on (2.3) leads to

ε j(A/pA) ' ε j+1(µp ⊗ A).

Since (2.1) is a G-isomorphism, combining with the above isomorphism, we obatin

ε jA/p ' ε j+1C/p, 0 ≤ j ≤ p − 3

as desired. �
Next, we give the K2 analogue of the Herbrand-Ribet theorem of the field Q(ζp) as follow.

Theorem 2.1. Let i be even, 4 ≤ i ≤ p − 3. Then

Ci , 0⇐⇒ p|Bp+1−i.

Proof. It is clearly that
Ci , 0⇔ εiC/p , 0,

Ai−1 , 0⇔ εi−1A/p , 0.

From Lemma 2.1, we have εiC/p ' εi−1A/p. Utilizing Theorem 1.1, we get Ci , 0 ⇔ p|Bp+1−i,

as required.
However, the proof of “ ⇒ ” can also be obtained by the properties of the Stickelberger element

without using Theorem 1.1 and Lemma 2.1, We sketch the proof as follow.
Considering the Stickelberger element for the cyclotomic field Q(ζp)

θ1 =

p−1∑
a=1

ζ(σa,−1)σ−1
a ,
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where ζ(σ, s) is the partial zeta function, we can prove that (c2 − ωi(c))B2,ω−i annihilates Ci, moreover,
for i = 4, 6, · · · , p − 3, B2,ω−i annihilates Ci.

We now suppose Ci , 0. Then B2,ω−i ≡ 0 (mod p). Since

B2,ωn ≡
Bn+2

n + 2
(mod p),

we get

B2,ω−i = B2,ωp−1−i ≡
Bp+1−i

p + 1 − i
(mod p).

Therefore, p|Bp+1−i.

3. K2 analogue of Vandiver’s conjecture

The Vandiver’s conjecture states that p does not divide the class number of Q(ζp)+, where Q(ζp)+ is
the maximal real subfield of the cyclotomic field Q(ζp). Equivalently, the Vandiver’s conjecture says
that all the even part εiA are trivial.

Lemma 3.1. For any irregular prime p, A2i = 0, where 1 ≤ i ≤ 14.

Proof. From [10] (Tables §1 Bernoulli numbers), for i = 1, 2, 3, 4, 5, 7, we have p - B2i. So from
Theorem 1.1, we have Ap−2i = 0, i = 1, 2, 3, 4, 5, 7. By the reflection theorem (see [10, Theorem 10.9])

p-rankA2i ≤ p-rankAp−2i,

we get A2i = 0.
Let Pn denote the maximal prime factor of Bn if Bn has a prime factor. For i =

6, 8, 9, 10, 11, 12, 13, 14, from [10] (Tables §1 Bernoulli numbers) we have

P12 = 691, P16 = 3617, P18 = 43867, P20 = 617,

P22 = 593, P24 = 2294797, P26 = 657931, P28 = 362903.

These primes are all less than 12,000,000. But it is well know that the Vandiver conjecture has
been checked to be true for all irregular primes less than 12,000,000. So we get A2i = 0 for
i = 6, 8, 9, 10, 11, 12, 13, 14. �

Now we can make a K2-analogue of Vandiver’s conjecture as follow.

Conjecture 3.1. For odd i, εiC = 0, where C is the p-part of K2(Z[ζp]).

It has been proved that εp−3A always vanishes (see [5]) and that if the prime p ≡ 3 (mod 4), then
ε(p+1)/2A is trivial (see [3, 6]). Combining these results with Lemmas 2.1 and 3.1, we get the following
result, which checks some cases of Conjecture 3.1.

Theorem 3.1. For any irregular prime p, C2i+1 = 0 (1 ≤ i ≤ 14), Cp−2 = 0 and C(p+3)/2 = 0 if
p ≡ 3 (mod 4).

4. Conclusions

We gave the K2 analogue of Herbrand-Ribet theorem and prove the case. The K2 analogue of
Vandiver’s conjecture was also obtained, but this case is hard to prove. However, we just check some
special circumstances of it.
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