In this paper, to improve the convergence speed of the block-diagonal and anti-block-diagonal splitting (BAS) iteration method, we design a modified BAS (MBAS) method to obtain the numerical solution of the absolute value equation. Theoretical analysis shows that under certain conditions the MBAS method is convergent. Numerical experiments show that the MBAS method is feasible.
Citation: Cui-Xia Li, Long-Quan Yong. Modified BAS iteration method for absolute value equation[J]. AIMS Mathematics, 2022, 7(1): 606-616. doi: 10.3934/math.2022038
In this paper, to improve the convergence speed of the block-diagonal and anti-block-diagonal splitting (BAS) iteration method, we design a modified BAS (MBAS) method to obtain the numerical solution of the absolute value equation. Theoretical analysis shows that under certain conditions the MBAS method is convergent. Numerical experiments show that the MBAS method is feasible.
[1] | C. X. Li, S. L. Wu, Block-diagonal and anti-block-diagonal splitting iteration method for absolute value equation, In: Simulation tools and techniques, 12th EAI International Conference, SIMUtools 2020, Guiyang, China, 369 (2021), 572–581. doi: 0.1007/978-3-030-72792-5_45. |
[2] | O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), 101–108. doi: 10.1007/s11590-008-0094-5. doi: 10.1007/s11590-008-0094-5 |
[3] | Z. Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009), 2923–2936. doi: 10.1016/j.apnum.2009.06.005. doi: 10.1016/j.apnum.2009.06.005 |
[4] | M. Z. Zhu, Y. E. Qi, The nonlinear HSS-like iteration method for absolute value equations, arXiv. Available from: https://arXiv.org/abs/1403.7013v4. |
[5] | J. Rohn, A theorem of the alternatives for the equation $Ax+B|x| = b$, Linear Multilinear A., 52 (2004), 421–426. doi: 10.1080/0308108042000220686. doi: 10.1080/0308108042000220686 |
[6] | O. L. Mangasarian, Absolute value programming, Comput. Optim. Applic., 36 (2007), 43–53. doi: 10.1007/s10589-006-0395-5. doi: 10.1007/s10589-006-0395-5 |
[7] | O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359–367. doi: 10.1016/j.laa.2006.05.004. doi: 10.1016/j.laa.2006.05.004 |
[8] | S. L. Wu, P. Guo, Modulus-based matrix splitting algorithms for the quasi-complementarity problems, Appl. Numer. Math., 132 (2018), 127–137. doi: 10.1016/j.apnum.2018.05.017. doi: 10.1016/j.apnum.2018.05.017 |
[9] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Society for Industrial and Applied Mathematics, 2009. doi: 10.1137/1.9780898719000. |
[10] | J. Rohn, An algorithm for solving the absolute value equations, Electron. J. Linear Algebra, 18 (2009), 589–599. doi: 10.13001/1081-3810.1332. doi: 10.13001/1081-3810.1332 |
[11] | J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35–44. doi: 10.1007/s11590-012-0560-y. doi: 10.1007/s11590-012-0560-y |
[12] | D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191–2202. doi: 10.1007/s11590-014-0727-9. doi: 10.1007/s11590-014-0727-9 |
[13] | O. L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett., 9 (2015), 1469–1474. doi: 10.1007/s11590-015-0893-4. doi: 10.1007/s11590-015-0893-4 |
[14] | S. L. Wu, T. Z. Huang, X. L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 228 (2009), 424–433. doi: 10.1016/j.cam.2008.10.006. doi: 10.1016/j.cam.2008.10.006 |
[15] | C. X. Li, S. L. Wu, Modified SOR-like iteration method for absolute value equations, Math. Probl. Eng., 2020 (2020), 9231639. doi: 10.1155/2020/9231639. doi: 10.1155/2020/9231639 |
[16] | A. X. Wang, H. J. Wang, Y. K. Deng, Interval algorithm for absolute value equations, Cent. Eur. J. Math., 9 (2011), 1171–1184. doi: 10.2478/s11533-011-0067-2. doi: 10.2478/s11533-011-0067-2 |
[17] | S. Ketabchi, H. Moosaei, An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side, Comput. Math. Appl., 64 (2012), 1882–1885. doi: 10.1016/j.camwa.2012.03.015. doi: 10.1016/j.camwa.2012.03.015 |
[18] | C. Zhang, Q. J. Wei, Global and finite convergence of a generalized newton method for absolute value equations, J. Optim. Theory. Appl., 143 (2009), 391–403. doi: 10.1007/s10957-009-9557-9. doi: 10.1007/s10957-009-9557-9 |
[19] | C. X. Li, A preconditioned AOR iterative method for the absolute value equations, Inter. J. Comput. Meth., 14 (2017), 1750016. doi: 10.1142/S0219876217500165. doi: 10.1142/S0219876217500165 |
[20] | J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, 1970. doi: 10.1016/C2013-0-11263-9. |
[21] | Y. F. Ke, C. F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 311 (2017), 195–202. doi: 10.1016/j.amc.2017.05.035. doi: 10.1016/j.amc.2017.05.035 |
[22] | Y. F. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett., 99 (2020), 105990. doi: 10.1016/j.aml.2019.07.021. doi: 10.1016/j.aml.2019.07.021 |
[23] | T. Saha, S. Srivastava, S. Khare, P. S. Stanimirovic, M. D. Petkovic, An improved algorithm for basis pursuit problem and its applications, Appl. Math. Comput., 355 (2019), 385–398. doi: 10.1016/j.amc.2019.02.073. doi: 10.1016/j.amc.2019.02.073 |
[24] | M. D. Petkovic, Generalized Schultz iterative methods for the computation of outer inverses, Comput. Math. Appl., 67 (2014), 1837–1847. doi: 10.1016/j.camwa.2014.03.019. doi: 10.1016/j.camwa.2014.03.019 |
[25] | M. D. Petkovic, M. A. Krstic, K. P. Rajkovic, Rapid generalized Schultz iterative methods for the computation of outer inverses, J. Comput. Appl. Math., 344 (2018), 572–584 doi: 10.1016/j.cam.2018.05.048. doi: 10.1016/j.cam.2018.05.048 |
[26] | M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1–137. doi: 10.1017/S0962492904000212. doi: 10.1017/S0962492904000212 |
[27] | Z. Z. Bai, Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), 2900–2932. doi: 10.1016/j.laa.2008.01.018. doi: 10.1016/j.laa.2008.01.018 |