In this paper, by using the mountain pass lemma and the skill of truncation function, we investigate the existence and concentration phenomenon of nontrivial weak solutions for a class of elastic beam differential equation with two parameters $ \lambda $ and $ \mu $ when the nonlinear term satisfies some growth conditions only near the origin. In particular, we obtain a concrete lower bound of the parameter $ \lambda $, and analyze the relationship between $ \lambda $ and $ \mu $. In the end, we investigate the concentration phenomenon of solutions when $ \mu\to 0 $, and obtain a specific lower bound of the parameter $ \lambda $ which is independent of $ \mu $.
Citation: Minggang Xia, Xingyong Zhang, Danyang Kang, Cuiling Liu. Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity[J]. AIMS Mathematics, 2022, 7(1): 579-605. doi: 10.3934/math.2022037
In this paper, by using the mountain pass lemma and the skill of truncation function, we investigate the existence and concentration phenomenon of nontrivial weak solutions for a class of elastic beam differential equation with two parameters $ \lambda $ and $ \mu $ when the nonlinear term satisfies some growth conditions only near the origin. In particular, we obtain a concrete lower bound of the parameter $ \lambda $, and analyze the relationship between $ \lambda $ and $ \mu $. In the end, we investigate the concentration phenomenon of solutions when $ \mu\to 0 $, and obtain a specific lower bound of the parameter $ \lambda $ which is independent of $ \mu $.
[1] | C. B. Zhai, R. P. Song, Q. Q. Han, The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem, Comput. Math. Appl., 62 (2011), 2639–2647. doi: 10.1016/j.camwa.2011.08.003. doi: 10.1016/j.camwa.2011.08.003 |
[2] | B. Yang, Maximum principle for a fourth order boundary value problem, Differ. Equ. Appl., 9 (2017), 495–504. doi: 10.7153/dea-2017-09-33. doi: 10.7153/dea-2017-09-33 |
[3] | E. Alves, E. Arnaut, L. A. P. Gomes, M. B. S. Cortes, A note on iterative solutions for a nonlinear fourth order oder, Bol. Soc. Paran. Mat., 27 (2009), 15–20. doi: 10.5269/bspm.v27i1.9062. doi: 10.5269/bspm.v27i1.9062 |
[4] | A. Cabada, R. Precup, L. Saavedra, S. A. Tersian, Multiple positive solutions to a fourth-order boundary-value problem, Electron. J. Differ. Eq., 2016 (2016), 1–18. |
[5] | G. Bonanno, A. Chinnì, S. A. Tersian, Existence results for a two point boundary value problem involving a fourth-order equation, Electron. J. Qual. Theo., 33 (2015), 1–9. |
[6] | A. Hadjian, M. Ramezani, Existence of infinitely many solutions for fourth-order equations depending on two parameters, Electron. J. Differ. Eq., 2017 (2017), 1–10. |
[7] | X. D. Wang, Infinitely many solutions for a fourth-order differential equation on a nonlinear elastic foundation, Bound. Value Probl., 2013 (2013), 1–10. doi: 10.1186/1687-2770-2013-258. doi: 10.1186/1687-2770-2013-258 |
[8] | L. Yang, H. B. Chen, X. X. Yang, The multiplicity of solutions for fourth-order equations generated from a boundary condition, Appl. Math. Lett., 24 (2011), 1599–1603. doi: 10.1016/j.aml.2011.04.008. doi: 10.1016/j.aml.2011.04.008 |
[9] | E. Alves, T. F. Ma, M. L. Pelicer, Monotone positive solutions for a fourth order equation with nonlinear boundary conditions, Nonlinear Anal. Theor., 71 (2009), 3834–3841. doi: 10.1016/j.na.2009.02.051. doi: 10.1016/j.na.2009.02.051 |
[10] | W. X. Wang, Y. P. Zheng, H. Yang, J. X. Wang, Positive solutions for elastic beam equations with nonlinear boundary conditions and a parameter, Bound. Value Probl., 2014 (2014), 1–17. doi: 10.1186/1687-2770-2014-80. doi: 10.1186/1687-2770-2014-80 |
[11] | S. Heidarkhani, F. Gharehgazlouei, Existence results for a boudary value problem involving a fourth-order elastic beam equation, J. Nonlinear Funct. Anal., 28 (2019), 1–15. doi: 10.23952/jnfa.2019.28. doi: 10.23952/jnfa.2019.28 |
[12] | M. R. H. Tavani, A. Nazari, Existence of positive solutions for a perturbed fourth-order equation, Kragujev. J. Math., 45 (2021), 623–633. doi: 10.46793/KgJMat2104.623H. doi: 10.46793/KgJMat2104.623H |
[13] | M. R. H. Tavani, Existence results for a perturbed fourth-order equation, J. Indones. Math. Soc., 23 (2017), 55–65. doi: 10.22342/jims.23.2.498.76-86. doi: 10.22342/jims.23.2.498.76-86 |
[14] | S. Heidarkhani, M. Ferrara, A. Salari, M. Azimbagirad, A variational approach to perturbed elastic beam problems with nonlinear boundary conditions, Math. Rep., 18 (2016), 573–589. |
[15] | Y. P. Song, A nonlinear boundary value problem for fourth-order elastic beam equations, Bound. Value Probl., 2014 (2014), 1–11. doi: 10.1186/s13661-014-0191-6. doi: 10.1186/s13661-014-0191-6 |
[16] | M. Jleli, B. Samet, Existence and uniqueness of positive solutions to a fourth-order two-point boundary-value problem, Electron. J. Differ. Eq., 2013 (2013), 1–10. |
[17] | M. Tuz, The existence of symmetric positive solutions of fourth-order elastic beam equations, Symmetry, 11 (2019), 121. doi: 10.3390/sym11010121. doi: 10.3390/sym11010121 |
[18] | Q. A. Dang, Q. L. Dang, Existence results and iterative method for a fully fourth-order nonlinear integral boundary value problem, Numer. Algor., 85 (2020), 887–907. doi: 10.1007/s11075-019-00842-3. doi: 10.1007/s11075-019-00842-3 |
[19] | H. Djourdem, S. Benaicha, N. Bouteraa, Existence and iteration of monotone positive solution for a fourth-order nonlinear boundary value problem, Fundam. J. Math. Appl., 1 (2018), 205–211. doi: 10.33401/fujma.418934. doi: 10.33401/fujma.418934 |
[20] | X. M. Zhang, M. Q. Feng, Positive solutions of singular beam equations with the bending term, Bound. Value Probl., 2015 (2015), 1–12. doi: 10.1186/s13661-015-0348-y. doi: 10.1186/s13661-015-0348-y |
[21] | L. Yang, C. F. Shen, Existence of positive solutions for a fourth-order m-point boundary value problem, J. Funct. Space., 2015 (2015), 1–8. doi: 10.1155/2015/928105. doi: 10.1155/2015/928105 |
[22] | D. Y. Kang, C. L. Liu, X. Y. Zhang, Existence of solutions for Kirchhoff-Type fractional Dirichlet problem with p-Laplacian, Mathematics, 8 (2020), 106. doi: 10.3390/math8010106. doi: 10.3390/math8010106 |
[23] | D. G. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, P. Am. Math. Soc., 133 (2005), 787–794. doi: 10.1090/S0002-9939-04-07635-X. doi: 10.1090/S0002-9939-04-07635-X |
[24] | A. R. Li, J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 66 (2015), 3147–3158. doi: 10.1007/s00033-015-0551-9. doi: 10.1007/s00033-015-0551-9 |
[25] | E. S. Medeiros, U. B. Severo, On the existence of signed solutions for a quasilinear elliptic problem in $\mathbb{R}^{N}$, Mat. Contemp., 32 (2007), 193-205. |
[26] | N. S. Papageorgiou, V. D. Radulescu, D. D. Repov, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys., 69 (2018), 1–21. doi: 10.1007/s00033-018-1001-2. doi: 10.1007/s00033-018-1001-2 |
[27] | Y. Xu, Z. Tan, D. Sun, Multiplicity results for a nonlinear elliptic problem involving the fractional Laplacian, Acta Math. Sci., 36 (2016), 1793–1803. doi: 10.1016/S0252-9602(16)30106-0. doi: 10.1016/S0252-9602(16)30106-0 |
[28] | T. S. He, Z. A. Yao, Z. H. Sun, Multiple and nodal solutions for parametric Neumann problems with nonhomogeneous differential operator and critical growth, J. Math. Anal. Appl., 449 (2017), 1133–1151. doi: 10.1016/j.jmaa.2016.12.020. doi: 10.1016/j.jmaa.2016.12.020 |
[29] | Q. Zhang, Existence of fast homoclinic solutions for a class of second-order damped vibration systems, Bound. Value Probl., 2018 (2018), 1–13. doi: 10.1186/s13661-018-0995-x. doi: 10.1186/s13661-018-0995-x |
[30] | Q. Zhang, Y. Li, Existence and multiplicity of fast homoclinic solutions for a class of nonlinear second-order nonautonomous systems in a weighted Sobolev space, J. Funct. Space., 2015 (2015), 495040. doi: 10.1155/2015/495040. doi: 10.1155/2015/495040 |
[31] | Q. Zhang, Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems with impulsive effects, Abstr. Appl. Anal., 2014 (2014), 960276. doi: 10.1155/2014/960276. doi: 10.1155/2014/960276 |
[32] | X. Y. Zhang, Infinitely many solutions for a class of second-order damped vibration systems, Electron. J. Qual. Theo., 2013 (2013), 1–18. |
[33] | X. Wu, S. X. Chen, K. M. Teng, On variational methods for a class of damped vibration problems, Nonlinear. Anal. Theor., 68 (2008), 1432–1441. doi: 10.1016/j.na.2006.12.043. doi: 10.1016/j.na.2006.12.043 |
[34] | Q. Zhang, C. Gan, T. Xiao, Z. Jia, Some results of nontrivial solutions for Klein-Gordon-Maxwell systems with local super-quadratic conditions, J. Geom. Anal., 31 (2021), 5372–5394. doi: 10.1007/s12220-020-00483-2. doi: 10.1007/s12220-020-00483-2 |
[35] | M. Willem, Minimax theorems, Springer Science & Business Media, 1997. |
[36] | J. Xie, X. Y. Zhang, C. L. Liu, D. Y. Kang, Existence and multiplicity of solutions for a class of damped-like fractional differential system, AIMS Mathematics, 5 (2020), 4268–4284. doi: 10.3934/math.2020272. doi: 10.3934/math.2020272 |
[37] | T. F. Ma, Positive solutions for a beam equation on a nonlinear elastic foundation, Math. Comput. Model., 39 (2004), 1195–1201. doi: 10.1016/j.mcm.2004.06.001. doi: 10.1016/j.mcm.2004.06.001 |