Research article

A novel stability analysis for the Darboux problem of partial differential equations via fixed point theory

  • Received: 27 April 2021 Accepted: 31 August 2021 Published: 10 September 2021
  • MSC : 45N05, 34G20, 47H10

  • We present Ulam-Hyers-Rassias (UHR) stability results for the Darboux problem of partial differential equations (DPPDEs). We employ some fixed point theorem (FPT) as the main tool in the analysis. In this manner, our results are considered as some generalized version of several earlier outcomes.

    Citation: El-sayed El-hady, Abdellatif Ben Makhlouf. A novel stability analysis for the Darboux problem of partial differential equations via fixed point theory[J]. AIMS Mathematics, 2021, 6(11): 12894-12901. doi: 10.3934/math.2021744

    Related Papers:

  • We present Ulam-Hyers-Rassias (UHR) stability results for the Darboux problem of partial differential equations (DPPDEs). We employ some fixed point theorem (FPT) as the main tool in the analysis. In this manner, our results are considered as some generalized version of several earlier outcomes.



    加载中


    [1] S. Andras, A. Baricz, T. Pogany, Ulam-Hyers stability of singular integral equations via weakly Picard operators, Fixed Point Theory, 17 (2016), 21–36.
    [2] S. Abbas, M. Benchohra, Ulam-Hyers stability for the Darboux problem for partial fractional differential and integro-differential equations via Picard operators, Res. Math., 65 (2014), 67–79. doi: 10.1007/s00025-013-0330-x
    [3] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373–380.
    [4] Y. Başci, A. Misir, S. Öğrekçi, On the stability problem of differential equations in the sense of Ulam, Res. Math., 75 (2020), 1–13. doi: 10.1007/s00025-019-1126-4
    [5] A. Ben Makhlouf, E. El-hady, Novel stability results for Caputo fractional differential equations, Math. Probl. Eng., 2021 (2021), 9817668.
    [6] A. Ben Makhlouf, L. Mchiri, M. Rhaima, Ulam-Hyers-Rassias stability of stochastic functional differential equations via fixed point methods, J. Funct. Spaces, 2021 (2021), 5544847.
    [7] F. Bojor, Note on the stability of first order linear differential equations, Opusc. Math., 32 (2012), 67–74. doi: 10.7494/OpMath.2012.32.1.67
    [8] D. Boucenna, A. Ben Makhlouf, E. El-hady, M. A. Hammami, Ulam-Hyers-Rassias stability for generalized fractional differential equations, Math. Methods Appl. Sci., 44 (2021), 10267–10280. doi: 10.1002/mma.7406
    [9] S. Boulares, A. Ben Makhlouf, H. Khellaf, Generalized weakly singular integral inequalities with applications to fractional differential equations with respect to another function, Rocky Mt. J. Math., 50 (2020), 2001–2010.
    [10] N. Brillouët-Belluot, J. Brzdȩk, K. Ciepliński, On some recent developments in Ulam's type stability, Abstr. Appl. Anal., 2012 (2012), 716936.
    [11] L. P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of Volterra integral equations, Banach J. Math. Anal., 3 (2009), 36–43. doi: 10.15352/bjma/1240336421
    [12] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. doi: 10.1090/S0002-9904-1968-11933-0
    [13] E. C. de Oliveira, J. V. C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Res. Math., 73 (2018), 1–16. doi: 10.1007/s00025-018-0773-1
    [14] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequ. Math., 50 (1995), 143–190. doi: 10.1007/BF01831117
    [15] M. E. Gordji, Y. J. Cho, M. B. Ghaemi, B. Alizadeh, Stability of the second order partial differential equations, J. Inequal. Appl., 2011 (2011), 1–10. doi: 10.1186/1029-242X-2011-1
    [16] D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equation in several variables, Rirkhäuser, Basel, 1998.
    [17] J. Huang, S. M. Jung, Y. Li, On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 52 (2015), 685–697.
    [18] S. M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl., 2007 (2007), 57064. doi: 10.1155/2007/57064
    [19] S. M. Jung, A fixed point approach to the stability of differential equations $y^{\prime} = f(x, y)$, Bull. Malays. Math. Sci. Soc., 33 (2010), 47–56.
    [20] N. Lungu, S. A. Ciplea, Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations, Carpathian J. Math., (2015), 233–240.
    [21] N. Lungu, C. Crăciun, Ulam-Hyers-Rassias stability of a hyperbolic partial differential equation, ISRN Math., 2012 (2012), 609754.
    [22] D. Marian, S. A. Ciplea, N. Lungu, Ulam-Hyers stability of a parabolic partial differential equation, Demonstr. Math., 52 (2019), 475–481. doi: 10.1515/dema-2019-0040
    [23] T. Miura, S. Miyajima, S. H. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl., 286 (2003), 136–146. doi: 10.1016/S0022-247X(03)00458-X
    [24] T. Miura, S. Miyajima, S. H. Takahasi, Hyers-Ulam stability of linear differential operator with constant coeffcients, Math. Nachr., 258 (2003), 90–96. doi: 10.1002/mana.200310088
    [25] M. Obloza, Hyers-Ulam stability of the linear differential equations, Rocznik. Nauk. Dydakt. Prace. Mat., 13 (1993), 259–270.
    [26] M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik. Nauk. Dydakt. Prace. Mat., 14 (1997), 141–146.
    [27] D. Popa, G. Pugna, Hyers-Ulam stability of Euler's differential equation, Res. Math., 69 (2016), 317–325. doi: 10.1007/s00025-015-0465-z
    [28] S. Rahim, Z. Akbar, A fixed point approach to the stability of a nonlinear Volterra integrodifferential equation with delay, Hacettepe J. Math. Stat., 47 (2018), 615–623.
    [29] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1
    [30] I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai Math., LIV (2009), 125–133.
    [31] I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10 (2009), 305–320.
    [32] I. A. Rus, Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian J. Math., 20 (2004), 125–134.
    [33] I. A. Rus, Picard operators and applications, Sci. Math. Jpn., 58 (2003), 191–219.
    [34] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
    [35] I. A. Rus, N. Lungu, Ulam stability of a nonlinear hyperbolic partial differential equation, Carpathian J. Math., (2008), 403–408.
    [36] Y. Shen, The Ulam stability of first order linear dynamic equations on time scales, Res. Math., 72 (2017), 1881–1895. doi: 10.1007/s00025-017-0725-1
    [37] P. U. Shikhare, K. D. Kucche, Existence, uniqueness and Ulam stabilities for nonlinear hyperbolic partial integrodifferential equations, Int. J. Appl. Comput. Math., 5 (2019), 1–21.
    [38] R. Shah, A. Zada, Hyers-Ulam-Rassias stability of impulsive Volterra integral equation via a fixed point approach, J. Linear Topol. Algebra, (2019), 219–227.
    [39] S. H. Takahasi, T. Miura, S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, Bull. Korean Math. Soc., 39 (2002), 309–315. doi: 10.4134/BKMS.2002.39.2.309
    [40] C. Tunç, E. Biçer, Hyers-Ulam-Rassias stability for a first order functional differential equation, J. Math. Fund. Sci., 47 (2015), 143–153. doi: 10.5614/j.math.fund.sci.2015.47.2.3
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1920) PDF downloads(117) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog