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1. Introduction

Ulam’s stability problem, also referred to as Ulam-Hyers problem, started as a tool to find the
error people usually face when they replace solutions of functional equations by functions that satisfy
them only approximately [10, 14]. It is widely used for investigating the stability of many kinds of
(difference, integral, differential, fractional differential, partial differential) equations. The Ulam’s
stability problem is due to the well-known Polish mathematician S. M. Ulam who presented a list (one
of which is the stability) of open problems during a conference held in Wisconsin University in the
fall term of 1940. The stability problem posed by Ulam [14] concerning group homomorphism can be
stated as:
If G∗1 is some group and (G∗∗1 , χ) a metric group. Assume ε1 > 0, does there exist δ1 > 0 such that if
f1 : G∗1 → G∗∗1 fulfilling

χ( f1(x1x2), f1(x1) f1(x2)) < δ1

for every x1, x2 ∈ G∗1, then a homomorphism g1 : G∗1 → G∗∗1 exists satisfying

χ( f1(x1), g1(x1)) < ε1

for all x1 ∈ G∗1?
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Many mathematicians have interacted with the question of Ulam and introduced interesting
solutions in many settings. In particular, in 1941, D. H. Hyers introduced an affirmative answer to the
question of Ulam in case of Banach spaces. Since then, the stability problem is called UH and
sometimes Hyers-Ulam stability problem. Afterwards, Rassias in 1978 [29] introduced a general
interesting form of Hyers’s result. The result obtained by Rassias and concerning the well-known
Cauchy equation ( f (x + y) = f (x) + f (y)) takes the form [29]:

Theorem 1. Assume that B1 and B∗1 are Banach spaces, suppose a continuous mapping h : R → B∗1
from R into B∗1. Suppose that there is ω ≥ 0, ϑ ∈ [0, 1) with

‖h(ε∗ + ε∗∗) − h(ε∗) − h(ε∗∗)‖ ≤ ω(‖ε∗‖ϑ + ‖ε∗∗‖ϑ), ε∗, ε∗∗ ∈ B1 \ {0}. (1.1)

Then a unique solution P : B1 → B∗1 of the Cauchy equation exists with

‖h(ε) − P(ε)‖ ≤
2ω‖ε‖ϑ

|2 − 2ϑ|
, ε ∈ B1 \ {0}. (1.2)

The theorem above introduced by Rassias see [29] is nowadays known as the UHR stability.
For the past three decades, the stability issue of differential equations has been a focus of scientific

investigations by many mathematicians that can be briefly stated as follows. In 1993, Obloza [25]
pioneered the stability issue of differential equations in the sense of UH [26]. Five years latter, in
particular in 1998, Alsina and Ger [3] studied the UH stability of the ordinary differential equation
y′(t) = y(t). They end up with the estimation |y(t) − y0(t)| ≤ 3ε, where y0(t) is some solution of
the differential equation. In 2002, an extension of the results presented by Alsina and Ger has been
introduced by Takahasi et al., where they investigated the stability of the equation g′(ς) = λg(ς) in
Banach spaces. In 2003, Miura et al. generalized the work of Alsina and Ger to higher order differential
equations [23, 24].

Following such interesting results, many articles devoted to this subject have been introduced [5, 6,
8,9,15,28]. In 2010, Jung employed an approach based on FPT to study the stability of the differential
equation x′2 = h(x1, x2) in UHR sense [19]. It should be remarked that Jung in [19] generalized the
work of Alsina and Ger to the nonlinear case. In 2012, Bojor [7] improved the result of Jung in [19]
and used some different assumptions to study the stability of the equation

h′(ξ) + m(ξ)h(ξ) = r(ξ).

In 2015, The authors in [40] modified the approach of Jung in [19] for the functional differential
equation

z′(x1) = H(x1, z(x1), z(x1 − τ)),

for some nonnegative τ. In [17], the stability of the following nonlinear differential equation

Z(n)(x1) = G(x1,Z(x1),Z′(x1), · · · ,Z(n−1)(x1)),

has been investigated using some FPT. In 2016, the authors investigated UH stability of Euler’s
differential equation [27]. In 2017, the authors introduced Ulam stability results for differential
equations on time scales [36].
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The stability issue of partial differential equation (PDEs) has been investigated by many
mathematicians using different tools (see the articles [1, 2, 15, 20, 21, 28, 37] and the references
therein). Our contribution can be seen as some generalized version of the results in [1, 4]. The rest of
the article is organized as follows. In the next Section we recall some preliminaries, in Section 3 we
present the stability results in UHR sense, and we use Section 5 to conclude our work.

2. Preliminaries

From now on, R is used to denote real numbers set, C to denote the complex numbers set, and we
fix an interval J := [a1, a1 + T1] × [a2, a2 + T2] for some reals ai,Ti, i = 1, 2 with Ti > 0.

Definition 1. If σ : S × S → [0,∞] is some mapping. The mapping σ is said to be a generalized
metric on a nonempty set S iff σ fulfills:

G1 σ(r1, r2) = 0 iff r1 = r2;

G2 σ(r1, r2) = σ(r2, r1) for all r1, r2 ∈ S ;

G3 σ(r1, r3) ≤ σ(r1, r2) + σ(r2, r3) for all r1, r2, r3 ∈ S .

Theorem 2. [12] If (Z, γ) is a generalized complete metric space. Assume that Γ : Z → Z is an
operator which is strictly contractive with some Lipschitz constant L < 1. If there is a nonnegative
integer k such that γ(Γk+1y,Γky) < ∞ for some y ∈ Z, then

(a) lim
n−→+∞

Γny = y∗ with Γ(y∗) = y∗;

(b) y∗ is the unique fixed point of Γ in Z∗ := {y1 ∈ Z : γ(Γky, y1) < ∞};

(c) If y1 ∈ Z∗, then γ(y1, y∗) ≤ 1
1−Lγ(Γy1, y1).

The current article is devoted to study the stability of the following PDE:

∂2u(ω1, ω2)
∂ω1∂ω2

= f (ω1, ω2, u(ω1, ω2)) (2.1)

for all (ω1, ω2) ∈ J satisfying the initial conditions
u(ω1, a2) = ϕ(ω1), if ω1 ∈ [a1, a1 + T1]
u(a1, ω2) = ψ(ω2), if ω2 ∈ [a2, a2 + T2]
ϕ(a1) = ψ(a2).

The function f : J × R → R is continuous and ϕ : [a1, a1 + T1] → R, ψ : [a2, a2 + T2] → R are given
absolutely continuous functions. Equation (2.1) is equivalent to the integral equation (I.E.)

u(ω1, ω2) = h(ω1, ω2) +

∫ ω1

a1

∫ ω2

a2

f (t, s, u(t, s))dsdt,

where
h(ω1, ω2) = ϕ(ω1) + ψ(ω2) − ϕ(a1).
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Let us denote the space E as follows
E = C

(
J,R

)
.

Define a metric d in the following way

d(ϑ1, ϑ2) := inf
{

K ∈ [0,∞] :
|ϑ1(ω1, ω2) − ϑ2(ω1, ω2)|

eMq(ω2−a2)eMp(ω1−a1) ≤ Kζ(ω1, ω2),∀(ω1, ω2) ∈ J
}
, (2.2)

where ζ ∈ C
(
J, (0,∞)

)
and M, q and p are some positive constants with q + p = 1. Then the space

(E, d) is a complete generalized metric space.

3. Stability results

This section is used to show our main results. In other words, we prove that under certain conditions,
functions that satisfy (2.1) approximately (in some sense) are close (in some way) to the solutions of
(2.1). We have done this in UHR sense.

Theorem 3. Assume that f satisfies

| f (ω1, ω2, u1) − f (ω1, ω2, u2)| ≤ L|u1 − u2|,

for all (ω1, ω2) ∈ J, ui ∈ R, i = 1, 2 and for some L > 0. If an absolutely continuous function V : J → R
satisfies ∣∣∣∣∂2V(ω1, ω2)

∂ω1∂ω2
− f (ω1, ω2,V(ω1, ω2))

∣∣∣∣ ≤ εζ(ω1, ω2), (3.1)

for some continuous, positive, nondecreasing function ζ(ω1, ω2) in both ω1 and ω2 and ε > 0, then
there is a unique solution U0 of (2.1) such that

|V(ω1, ω2) − U0(ω1, ω2)| ≤ ε
(L + δ

δ

)
M1M2e(L+δ)pT1+(L+δ)qT2ζ(ω1, ω2),∀(ω1, ω2) ∈ J,

for any positive constants δ, p and q with p + q = 1, where M1 = sup
s∈[a1,a1+T1]

( s − a1

e(L+δ)p(s−a1)

)
and M2 =

sup
s∈[a2,a2+T2]

( s − a2

e(L+δ)q(s−a2)

)
.

Proof. Let consider the space (E, d̃) where the metric on E is defined as in the following manner

d̃(ϑ1, ϑ2) = inf
{
γ ∈ [0,∞] :

|ϑ1(ω1, ω2) − ϑ2(ω1, ω2)|
e(L+δ)q(ω2−a2)e(L+δ)p(ω1−a1) ≤ γζ(ω1, ω2),∀(ω1, ω2) ∈ J

}
.

Now, define the operatorA : E→ E such that

(Au)(ω1, ω2) := V(a1, ω2) + V(ω1, a2) − V(a1, a2) +

∫ ω1

a1

∫ ω2

a2

f (s1, s2, u(s1, s2))ds2ds1, ∀(ω1, ω2) ∈ J.

We haveAu ∈ E and d̃(Au0, u0) < ∞, ∀u0 ∈ E.
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Also, we have that d̃(Au0, u) < ∞ ∀u0, u ∈ E, then {u ∈ E : d̃(u0, u) < ∞} = E ∀u0 ∈ E.
Now, we show thatA is strictly contractive. For this purpose, we take any u1, u2 ∈ E and we see that∣∣∣∣(Au1)(ω1, ω2) − (Au2)(ω1, ω2)

∣∣∣∣ ≤ ∣∣∣∣∣ ∫ ω1

a1

∫ ω2

a2

{
f (s1, s2, u1(s1, s2)) − f (s1, s2, u2(s1, s2))

}
ds2ds1

∣∣∣∣∣
≤

∫ ω1

a1

∫ ω2

a2

∣∣∣∣ f (s1, s2, u1(s1, s2)) − f (s1, s2, u2(s1, s2))
∣∣∣∣ds2ds1

≤ Ld̃(u1, u2)
∫ ω1

a1

∫ ω2

a2

ζ(s1, s2)e(L+δ)q(s2−a2)e(L+δ)p(s1−a1)ds2ds1

≤ Ld̃(u1, u2)ζ(ω1, ω2)
∫ ω1

a1

∫ ω2

a2

e(L+δ)q(s2−a2)e(L+δ)p(s1−a1)ds2ds1

≤
L

L + δ
d̃(u1, u2)ζ(ω1, ω2)e(L+δ)q(ω2−a2)e(L+δ)p(ω1−a1), ∀(ω1, ω2) ∈ I.

So that
d̃(Au1,Au2) ≤

L
L + δ

d̃(u1, u2)

thenA is strictly contractive. Now, we get from (3.1)

|V(ω1, ω2) −AV(ω1, ω2)| ≤ ε

∫ ω1

a1

∫ ω2

a2

ζ(s1, s2)ds2ds1

≤ εζ(ω1, ω2)(ω1 − a1)(ω2 − a2), (ω1, ω2) ∈ J,

then
|V(ω1, ω2) −AV(ω1, ω2)|
e(L+δ)p(ω1−a1)e(L+δ)q(ω2−a2) ≤ εζ(ω1, ω2)M1M2, ∀(ω1, ω2) ∈ J,

so that
d̃(V,AV) ≤ εM1M2.

By employing Theorem 2, we find that there is a solution U0 of (2.1) satisfying

d̃(V,U0) ≤
L + δ

δ
d̃(AV,V) ≤ ε

L + δ

δ
M1M2,

so that
|V(ω1, ω2) − U0(ω1, ω2)| ≤ ε

L + δ

δ
M1M2e(L+δ)pT1+(L+δ)qT2ζ(ω1, ω2),

for all (ω1, ω2) ∈ J. �

Remark 1. Note that, if we consider ζ(τ1, τ2) = 1, we get the Ulam stability of (2.1).

Remark 2. It should be noted that in our analysis, we used a FPT as the basic tool unlike the case
in [20] where the authors used the Gronwall Lemma (see Lemma 3.1 in [20]), see also the interesting
results [21, 22, 35].

Remark 3. Note that in [37], the authors obtained interesting stability results in the same sense of our
interests but using the Pachpatte’s inequality (see Theorem 3.4 in [37]).
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4. An example

Example 1. We consider Eq. (2.1) for a1 = a2 = 0, T1 = T2 = 2, ϕ(v1) = v2
1 + 1 , ψ(v2) = ev2 and

f (v1, v2, r) = v1
2v2

3 cos(r).
We have

|v1
2v2

3 cos(r1) − v1
2v2

3 cos(r2)| ≤ 32|r1 − r2|, ∀ (v1, v2) ∈ [0, 2] × [0, 2], r1, r2 ∈ R.

Then L = 32.
Suppose that V satisfies

|
∂2V(ω1, ω2)
∂ω1∂ω2

− ω1
2ω2

3 cos
(
V(ω1, ω2)

)
| ≤ 0.1(ω1 + ω2 + 1), (4.1)

for all (ω1, ω2) ∈ [0, 2] × [0, 2].
Here, ε = 0.1 and ζ(ω1, ω2) = ω1 +ω2 + 1. It follows from Theorem 3 that there is a solution U0 of the
equation and η > 0 such that

|V(ω1, ω2) − U0(ω1, ω2)| ≤ 0.1η(ω1 + ω2 + 1), ∀ (ω1, ω2) ∈ [0, 2] × [0, 2].

5. Conclusions

It is recognized that a generally applicable general approach to finding analytical solutions is not
available for most partial differential equation’s problems. In this work, we used a version of Banach
FPT to prove that under certain conditions, functions that satisfy some DPPDEs approximately, are
close in some sense to the exact solutions of such problems. In other words, we present stability results
for some DPPDEs in UHR sense.
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Basel, 1998.

17. J. Huang, S. M. Jung, Y. Li, On Hyers-Ulam stability of nonlinear differential equations, Bull.
Korean Math. Soc., 52 (2015), 685–697.

18. S. M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point
Theory Appl., 2007 (2007), 57064.

19. S. M. Jung, A fixed point approach to the stability of differential equations y′ = f (x, y), Bull.
Malays. Math. Sci. Soc., 33 (2010), 47–56.

20. N. Lungu, S. A. Ciplea, Ulam-Hyers-Rassias stability of pseudoparabolic partial differential
equations, Carpathian J. Math., (2015), 233–240.
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40. C. Tunç, E. Biçer, Hyers-Ulam-Rassias stability for a first order functional differential equation, J.
Math. Fund. Sci., 47 (2015), 143–153.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 11, 12894–12901.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Stability results
	An example
	Conclusions

