In this work, we establish inequalities of Hermite-Hadamard-Mercer (HHM) type for convex functions by using generalized fractional integrals. The results of our paper are the extensions and refinements of Hermite-Hadamard (HH) and Hermite-Hadamard-Mercer (HHM) type inequalities. We discuss special cases of our main results and give new inequalities of HH and HHM type for different fractional integrals like, Riemann-Liouville (RL) fractional integrals, k-Riemann-Liouville (k-RL) fractional integrals, conformable fractional integrals and fractional integrals of exponential kernel.
Citation: Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak. Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions[J]. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
[1] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[2] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[3] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[4] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[5] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[6] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[7] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and $ \delta^{1} $-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[8] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized $ \kappa $–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
In this work, we establish inequalities of Hermite-Hadamard-Mercer (HHM) type for convex functions by using generalized fractional integrals. The results of our paper are the extensions and refinements of Hermite-Hadamard (HH) and Hermite-Hadamard-Mercer (HHM) type inequalities. We discuss special cases of our main results and give new inequalities of HH and HHM type for different fractional integrals like, Riemann-Liouville (RL) fractional integrals, k-Riemann-Liouville (k-RL) fractional integrals, conformable fractional integrals and fractional integrals of exponential kernel.
For a convex function f:I⊆R→R on I with c,d∈I and c<d, the Hermite–Hadamard inequality states that [1]:
f(c+d2)≤1d−c∫dcf(t)dt≤f(c)+f(d)2. | (1.1) |
The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] are focused on extending and generalizing the convexity, Hermite-Hadamard inequality, and other inequalities for convex functions.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [18,19,20].
Now, we recall the definitions of Riemann-Liouville (RL) and generalized Riemann–Liouville (GRL) fractional integrals given by Sarikaya and Ertuğral.
Definition 1.1 ([18,19,20]). Let f∈L1[c,d]. The Riemann–Liouville (RL) fractional integrals RLIνc+f and RLIνd−f of order ν>0 with c≥0 are respectively defined by
RLIνc+f(x)=1Γ(ν)∫xc(x−t)ν−1f(t)dt,c<x, | (1.2) |
and
RLIνd−f(x)=1Γ(ν)∫dx(t−x)ν−1f(t)dt,x<d, | (1.3) |
with RLI0c+f(x)=RLI0d−f(x)=f(x).
Definition 1.2 ([21]). Assume that the function ℏ:[0,+∞)→[0,+∞) satisfies the following condition:
∫10ℏ(t)tdt<+∞. |
Then, the left sided and right sided generalized Riemann–Liouville (GRL) fractional integrals, denoted by GRLℏIc+ and GRLℏId−, are defined as follows:
GRLℏIc+f(x)=∫xcℏ(x−t)x−tf(t)dt,c<x, | (1.4) |
GRLℏId−f(x)=∫dxℏ(t−x)t−xf(t)dt,x<d. | (1.5) |
Remark 1.1. From the Definition 1.1 one can obtain some known definitions of fractional calculus as special cases. That is,
● If ℏ(t)=tνΓ(ν), then Definition 1.2 reduces to Definition 1.1.
● If ℏ(t)=tνkkΓk(ν), then the GRL fractional integrals reduce to k–RL fractional integrals [22].
● If ℏ(t)=tνexp(−1−ννt), then the GRL fractional integrals reduce to the fractional integrals with exponential kernel [23].
● If ℏ(t)=t(y−t)ν−1, then the GRL fractional integrals reduce to the conformable fractional integrals [24].
With a huge application of RL fractional integration and Hermite–Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite–Hadamard inequality, including RL fractional integration rather than ordinary integration; for example see [25,26,27,28,29,30,31,32].
On the one hand, it is well known that RL and GRL fractional integrals have the same importance in theory of integral inequalities, and the GRL fractional integrals are more convenient for calculation. Therefore it is necessary to study the Hermite-Hadamard integral inequalities by using the GRL fractional integrals while by using the RL fractional integrals. Fortunately, studying the Hermite-Hadamard integral inequalities via the GRL fractional integrations can unify the research of ordinary and fractional integrations. So it is necessary and meaningful to study Hermite-Hadamard integral inequalities via the GRL fractional integrations (see for details [21,33,34,35,36]).
In this paper, we consider the integral inequality of HHM type that depends on the Hermite-Hadamard and Jensen–Mercer inequalities. For this reason, we recall the Jensen–Mercer inequality: Let 0<x1≤x2≤⋯≤xn and α=(α1,α2,…,αn) nonnegative weights such that ∑ni=1αi=1. Then, the Jensen inequality [37,38] is as follows, for a convex function f on the interval [c,d], we have
f(n∑i=1αixi)≤n∑i=1αif(xi), | (1.6) |
for all xi∈[c,d] and αi∈[0,1], i=1,2,...,n.
Theorem 1.1 ([11,38]). If f is convex function on [c,d], then
f(c+d−n∑i=1αixi)≤f(c)+f(d)−n∑i=1αif(xi), | (1.7) |
for each xi∈[c,d] and αi∈[0,1], i=1,2,...,n with ∑ni=1αi=1.
For some results related to Jensen-Mercer inequality, see [39,40,41].
Based on the above observations and discussion, the primary purpose of this article is to establish several inequalities of HHM type for convex functions by using the GRL fractional integrals.
Throughout this attempt, we consider the following notations:
Λ(t):=∫t0ℏ((y−x)u)udu<+∞andΔ(t):=∫t0ℏ((y−x2)u)udu<+∞. |
Theorem 2.1. For a convex function f:[c,d]→R, we have the following inequalities for GRL:
f(c+d−x+y2)≤f(c)+f(d)−12Λ(1)[GRLℏIx+f(y)+GRLℏIy−f(x)]≤f(c)+f(d)−f(x+y2), | (2.1) |
and
f(c+d−x+y2)≤12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.2) |
Proof. From Jensen-Mercer inequality, we have for u,v∈[c,d]:
f(c+d−u+v2)≤f(c)+f(d)−f(u)+f(v)2. | (2.3) |
Then, for u=tx+(1−t)y and v=ty+(1−t)x, it follows that
f(c+d−x+y2)≤f(c)+f(d)−f(tx+(1−t)y)+f(ty+(1−t)x)2, | (2.4) |
for each x,y∈[c,d] and t∈[0,1]. By multiplying both sides of (2.4) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we can obtain
f(c+d−x+y2)Λ(1)≤[f(c)+f(d)]Λ(1)−12[∫10ℏ((y−x)t)t[f(tx+(1−t)y)+f(ty+(1−t)x)]dt]=[f(c)+f(d)]∫10Λ(1)−12[∫10ℏ((y−x)t)tf(tx+(1−t)y)dt+∫10ℏ((y−x)t)tf(ty+(1−t)x)dt]=[f(c)+f(d)]Λ(1)−12[∫yxℏ(y−w)y−wf(w)dw+∫yxℏ(w−x)w−xf(w)dw]=[f(c)+f(d)]Λ(1)−12[GRLℏIx+f(w)+GRLℏIy−f(w)]. |
This gives the first inequality in (2.1). To prove the second inequality in (2.1), first we have by the convexity of f:
f(u+v2)≤f(u)+f(v)2. | (2.5) |
By changing the variables u=tx+(1−t)y and v=ty+(1−t)x in (2.5), we have
f(x+y2)≤f(tx+(1−t)y)+f(ty+(1−t)x)2,t∈[0,1]. | (2.6) |
Multiplying both sides of (2.6) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we get
f(x+y2)Λ(1)≤12[∫10ℏ((y−x)t)tf(tx+(1−t)y)dt+∫10ℏ((y−x)t)tf(ty+(1−t)x)dt]=12[∫yxℏ(y−w)y−wf(w)+∫yxℏ(w−x)w−xf(w)dw]=12[GRLℏIx+f(y)+GRLℏIy−f(x)], |
which implies that
−f(x+y2)≥−12Λ(1)[GRLℏIx+f(y)+GRLℏIy−f(x)]. | (2.7) |
By adding f(c)+f(d) on both sides of (1.4), we can obtain the second inequality in (2.1).
Now we give the proof of inequalities (2.2). Since f is convex function, then for all u,v∈[c,d], we have
f(c+d−u+v2)=f(c+d−u+c+d−v2)≤12[f(c+d−u)+f(c+d−v)]. | (2.8) |
Then, for c+d−u=t(c+d−x)+(1−t)(c+d−y) and c+d−v=t(c+d−y)+(1−t)(c+d−x), it follows that
f(c+d−u+v2)≤12[f(t(c+d−x)+(1−t)(c+d−y))+f(t(c+d−y)+(1−t)(c+d−x))]. | (2.9) |
for each x,y∈[c,d] and t∈[0,1]. Now, by multiplying both sides of (2.9) by ℏ((y−x)t)t and integrating the obtaining inequality with respect to t over [0,1], we obtain
f(c+d−u+v2)Λ(1)≤12[∫10ℏ((y−x)t)tf(t(c+d−x)+(1−t)(c+d−y))dt+∫10ℏ((y−x)t)tf(t(c+d−y)+(1−t)(c+d−x))dt]=12[∫c+d−xc+d−yℏ(w−(c+d−y))w−(c+d−y)f(w)dw+∫c+d−xc+d−yℏ((c+d−x)−w)(c+d−x)−wf(w)dw]=12[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)], |
and this completes the proof of the first inequality in (2.2). To prove the second inequality in (2.2), first we use the convexity of f to get
f(t(c+d−x)+(1−t)(c+d−y))≤tf(c+d−x)+(1−t)f(c+d−y), | (2.10) |
f(t(c+d−y)+(1−t)(c+d−x))≤(1−t)f(c+d−x)+tf(c+d−y). | (2.11) |
Adding (2.10) and (2.11), we get
f(t(c+d−x)+(1−t)(c+d−y))+f(t(c+d−y)+(1−t)(c+d−x))≤f(c+d−x)+f(c+d−y)≤2[f(c)+f(d)]−[f(x)+f(y)]. | (2.12) |
Multiplying both sides of (2.12) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we obtain
∫10ℏ((y−x)t)tf(t(c+d−x)+(1−t)(c+d−y))dt+∫10ℏ((y−x)t)tf(t(c+d−y)+(1−t)(c+d−x))dt≤Λ(1)f(c+d−x)+Λ(1)f(c+d−y)≤2Λ(1)[f(c)+f(d)]−Λ(1)[f(x)+f(y)]. |
By using the change of variables of integration and then by multiplying the result by 12Λ(1), we can obtain the second and third inequalities in (2.2). This completes the proof of Theorem 2.1.
Remark 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then,
● If ℏ(t)=t, then Theorem 2.1 reduces to [42,Theorem 2.1].
● If ℏ(t)=tνΓ(ν), then Theorem 2.1 reduces to [43,Theorem 2].
● If we set ℏ(t)=t, x=c and y=d in (2.2), then (2.2) becomes (1.1).
● If ℏ(t)=tνkkΓk(a) in Theorem 2.1 (Eq. (2.2)), we get
f(c+d−x+y2)≤Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. |
● If we set ℏ(t)=tνΓ(ν), x=c and y=d in (2.2), then we have
f(c+d2)≤Γ(ν+1)2(b−a)ν[RLIνc+f(d)+RLIνd−f(c)]≤f(c)+f(d)2, |
which is derived in [25].
● If we set ℏ(t)=tνkkΓk(ν), x=c and y=d in (2.2), then we have
f(c+d2)≤Γk(ν+k)2(d−c)νk[RLIνc+,kf(d)+RLIνd−,kf(c)]≤f(c)+f(d)2, |
which is derived in [44].
● If x=c and y=d, then inequalities (2.1) reduces to the following inequalities:
f(c+d2)≤f(c)+f(d)−12Λ(1)[GRLℏIc+f(y)+GRLℏId−f(x)]≤f(c)+f(d)−f(c+d2). |
● If x=c and y=d, then inequalities (2.2) reduces to [21,Theorem 5].
Corollary 2.1. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for conformable fractional integrals:
f(c+d−x+y2)≤f(c)+f(d)−ν2(yν−xν)∫yxf(t)dνt≤f(c)+f(d)−f(x+y2), | (2.13) |
and
f(c+d−x+y2)≤ν(yν−xν)∫c+d−xc+d−yf(t)dνt≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.14) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 2.1, we can directly obtain the proof.
Remark 2.2. If we set x=c and y=d in (2.14), then we have the well-known conformable fractional HH integral inequality:
f(c+d2)≤νdν−cν∫dcf(t)dνt≤f(c)+f(d)2, |
which is derived by Adil Khan et al. in [45].
Corollary 2.2. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for fractional integrals with exponential kernel:
f(c+d−x+y2)≤f(c)+f(d)−(ν−1)2[exp(−1−νν(y−x))−1][expIνx+f(y)+expIνy−f(x)]≤f(c)+f(d)−f(x+y2), | (2.15) |
and
f(c+d−x+y2)≤(ν−1)2[exp(−1−νν(y−x))−1][expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.16) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 2.1, we can easily obtain the proof of Corollary 2.2.
Remark 2.3. If we set x=c and y=d in (2.16), then we have the HH inequalities for fractional integrals with exponential kernel:
f(c+d2)≤(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]≤f(c)+f(d)2, |
which is derived by Ahmad et al. in [46].
Theorem 2.2. For a convex function f:[c,d]→R, we have the following inequalities for GRL:
f(c+d−x+y2)≤12Δ(1)[GRLℏI(c+d−x+y2)−f(c+d−y)+GRLℏI(c+d−x+y2)+f(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. | (2.17) |
Proof. From the convexity of f, we have
f(c+d−u+v2)=f(c+d−u+c+d−v2)≤12f(c+d−u)+f(c+d−v). | (2.18) |
By setting u=t2x+2−t2y, v=2−t2x+t2y, it follows that
f(c+d−x+y2)≤12[f(c+d−(t2x+2−t2y))+f(c+d−(2−t2x+t2y))], | (2.19) |
for all x,y∈[c,d] and t∈[0,1]. Multiplying both sides of (2.19) by ℏ((y−x2)t)t and integrating its result with respect to t over [0,1], we get
f(c+d−x+y2)Δ(1)≤12[∫10ℏ((y−x2)t)tf(c+d−(t2x+2−t2y))dt+∫10ℏ((y−x2)t)tf(c+d−(2−t2x+t2y))dt]=12[∫c+d−x+y2c+d−yℏ(w−(c+d−y))w−(c+d−y)f(w)dw+∫c+d−xc+d−x+y2ℏ((c+d−x)−w)(c+d−x)−wf(w)dw]=12[GRLℏI(c+d−x+y2)−f(c+d−y)+GRLℏI(c+d−x+y2)+f(c+d−x)]. |
Thus, the first inequality in (2.17) is proved. To prove the second inequality in (2.17), by using the Jensen–Mercer inequality, we can deduce:
f(c+d−(t2x+2−t2y))≤f(c)+f(d)−[t2f(x)+2−t2f(y)] | (2.20) |
f(c+d−(2−t2x+t2y))≤f(c)+f(d)−[2−t2f(x)+t2f(y)]. | (2.21) |
By adding (2.20) and (2.21), we obtain
f(c+d−(t2x+2−t2y))+f(c+d−(2−t2x+t2y))≤2[f(c)+f(d)]−f(x)+f(y). | (2.22) |
Multiplying both sides of inequality (2.22) by ℏ((y−x2)t)t and integrating the result with respect to t over [0,1], we get
∫10ℏ((y−x2)t)tf(c+d−(t2x+2−t2y))dt+∫10ℏ((y−x2)t)tf(c+d−(2−t2x+t2y))dt≤2Δ(1)[f(c)+f(d)]−Δ(1)[f(x)+f(y)]. |
By using change of variables of integration and multiplying the result by 12Δ(1), we can easily obtain second inequality in (2.17).
Remark 2.4. Assume that the assumptions of Theorem 2.2 are satisfied.
● If ℏ(t)=t, then inequalities (2.17) becomes inequalities [42,Theorem 2.1].
● If we put ℏ(t)=t,x=c and y=d in Theorem 2.2, then inequalities (2.17) becomes inequalities (1.1).
● If ℏ(t)=tνΓ(ν), then Theorem 2.2 reduces to [43,Theorem 3].
● If we put ℏ(t)=tνΓ(ν),x=c and y=d in Theorem 2.2, then Theorem 2.2 reduces to [26,Theorem 4].
● If ℏ(t)=tνkkΓk(ν) in Theorem 2.2, we get
f(c+d−x+y2)≤2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. |
● If we put ℏ(t)=tνkkΓk(ν), x=c and y=d in Theorem 2.2, then Theorem 2.2 reduces to [44,Theorem 1.1].
● If x=c and y=d, then Theorem 2.2 becomes
f(c+d2)≤12Δ(1)[GRLℏI(c+d2)−f(c)+GRLℏI(c+d2)+f(d)]≤f(c)+f(d)2. |
Corollary 2.3. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for conformable fractional integrals:
f(c+d−x+y2)≤ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt≤f(c)+f(d)−f(x)+f(y)2. | (2.23) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 2.2, then we have proof of Corollary 2.3.
Remark 2.5. If we set x=c and y=d in (2.23), then we get
f(c+d2)≤ν[dν−(c+d2)ν]∫dcf(t)dνt≤f(c)+f(d)2. |
Corollary 2.4. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for fractional integrals with exponential kernel:
f(c+d−x+y2)≤(ν−1)2[exp(−1−νν(y−x)2)−1][expIν(c+d−x+y2)−f(c+d−y)+expIν(c+d−x+y2)+f(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. | (2.24) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 2.2, we get proof of Corollary 2.4.
Remark 2.6. If we set x=c and y=d in (2.24), then we get
f(c+d2)≤(ν−1)2[exp(−1−νν(d−c)2)−1][expIν(c+d2)−f(c)+expIν(c+d2)+f(d)]≤f(c)+f(d)2. |
In view of the inequalities (2.1) and (2.17), we can generate some related results in this section.
Lemma 3.1. Let f:[c,d]→R be a differentiable function on (c,d) such that f′∈L[c,d]. Then, the following equality holds for GRL:
f(c+d−y)+f(c+d−x)2−12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]=(y−x)2Λ(1)∫10[Λ(t)−Λ(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ(1)∫10Λ(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt. | (3.1) |
Proof. By the help of the right hand side of (3.1), we have
(y−x)2Λ(1)∫10Λ(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt=(y−x)2Λ(1)[∫10Λ(t)f′(c+d−(tx+(1−t)y))dt−∫10Λ(t)f′(c+d−(ty+(1−t)x))dt]=(y−x)2Λ(1)[S1−S2]. | (3.2) |
By applying integration by parts, one can obtain
S2=∫10Λ(t)f′(c+d−(ty+(1−t)x))dt=−Λ(1)f(c+d−y)y−x+1y−x∫10ℏ((y−x)t)tf(c+d−(ty+(1−t)x))=−Λ(1)f(c+d−y)y−x+1y−x=−Λ(1)f(c+d−y)y−x+1y−x[GRLℏI(c+d−y)+f(c+d−x)]. |
Similarly, one can obtain
S1=∫10Λ(t)f(c+d−(tx+(1−t)y))dt=Λ(1)f(c+d−x)y−x−1y−x[GRLℏI(c+d−x)−f(c+d−y)]. |
By making use of S1 and S2 in (3.2), we get the identity (3.1).
Remark 3.1. Let the assumptions of Lemma 3.1 be satisfied.
● If ℏ(t)=t, then Lemma 3.1 reduces to [43,Corollary 1].
● If ℏ(t)=tνΓ(ν), then Lemma 3.1 reduces to [43,Lemma 1].
● If ℏ(t)=tνkkΓk(ν) in Lemma 3.1, we get
f(c+d−x)+f(c+d−y)2−Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]=y−x2∫10[tνk−(1−t)νk]f′(c+d−(tx+(1−t)y))dt. | (3.3) |
● If x=c and y=d, then Lemma 3.1 reduces to [47,Lemma 2.1].
Corollary 3.1. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the conformable fractional integrals:
f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt=(y−x)2Λ1(1)∫10[Λ1(t)−Λ1(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ1(1)∫10Λ1(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt, | (3.4) |
where
Λ1(t)=yν−(tx+(1−t)y)νν. |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Lemma 3.1, then we have proof of Corollary 3.1.
Remark 3.2. By setting x=c and y=d in (3.4), we get
f(c)+f(d)2−νdν−cν∫dcf(t)dνt=(d−c)2Λ2(1)∫10[Λ2(t)−Λ2(1−t)]f′(td+(1−t)c)dt=(d−c)2Λ2(1)∫10Λ2(t)[f′(td+(1−t)c)−f′(tc+(1−t)d)]dt, |
where
Λ2(t)=yν−(tc+(1−t)d)νν. |
Corollary 3.2. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:
f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]=(y−x)2Λ3(1)∫10[Λ3(t)−Λ3(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ3(1)∫10Λ3(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt, | (3.5) |
where
Λ3(t)=exp(−1−νν(y−x)t)−1ν−1. |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Lemma 3.1, we get proof of Corollary 3.2.
Remark 3.3. If we set x=c and y=d in (3.5), we get
f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]=(d−c)2Λ4(1)∫10[Λ4(t)−Λ4(1−t)]f′(td+(1−t)c)dt=(d−c)2Λ4(1)∫10Λ4(t)[f′(td+(1−t)c)−f′(tc+(1−t)d)]dt, |
where
Λ4(t)=exp(−1−νν(d−c)t)−1ν−1. |
Lemma 3.2. Let f:[c,d]→R be a differentiable function on (c,d) such that f′∈L[c,d]. Then, the following equality holds for GRL:
12Δ(1)[GRLℏI(c+d−x+y2)+f(c+d−x)+GRLℏI(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)=(y−x)4Δ(1)∫10Δ(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt. | (3.6) |
Proof. The proof of Lemma 3.2 is similar to Lemma 3.1, so we omit it.
Remark 3.4. Let the assumptions of Lemma 3.2 be satisfied.
● If ℏ(t)=tνΓ(ν), then Lemma 3.2 reduces to [43,Lemma 2].
● If ℏ(t)=tνkkΓk(ν) in Lemma 3.2, we get
2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)=y−x4∫10tνk[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt. | (3.7) |
● If x=c and y=d, then Lemma 3.2 becomes
12Δ(1)[GRLℏI(c+d2)−f(c)+GRLℏI(c+d2)+f(d)]−f(c+d2)=d−c4Δ(1)∫10Δ(t)[f′(t2c+2−t2d)−f′(2−t2c+t2d)]dt. |
Corollary 3.3. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the conformable fractional integrals:
ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt=(y−x)4Δ1(1)∫10Δ1(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt, | (3.8) |
where
Δ1(t)=yν−(y−(y−x2)t)νν. |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Lemma 3.2, we have proof of Corollary 3.3.
Remark 3.5. If we set x=c and y=d in (3.8), we get
ν[dν−(d+c2)ν]∫dcf(t)dνt=(d−c)4Δ2(1)∫10Δ2(t)[f′(2−t2d+t2c)−f′(t2d+2−t2c)]dt, |
where
Δ2(t)=dν−(d−(d−c2)t)νν. |
Corollary 3.4. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:
(ν−1)2[exp(−1−νν(y−x)2)−1][expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)=(y−x)4Δ3(1)∫10Δ3(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt, | (3.9) |
where
Δ3(t)=exp(−1−νν(y−x)t2)−1ν−1. |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Lemma 3.2, we get proof of Corollary 3.4.
Remark 3.6. If we put x=c and y=d in (3.9), we get
(ν−1)2[exp(−1−νν(d−c)2)−1][expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]−f(c+d2)=(d−c)4Δ4(1)∫10Δ4(t)[f′(2−t2d+t2c)−f′(t2d+2−t2c)]dt, |
where
Δ4(t)=exp(−1−νν(d−c)t2)−1ν−1. |
Theorem 3.1. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′| is convex on [c,d]. Then, the following inequality holds for GRL:
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)[[|f′(c)|+|f′(d)|]∫10|Λ(t)−Λ(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ(t)−Λ(1−t)|dt], | (3.10) |
where
|GRLℏF(c,d;x,y)|:=|f(c+d−y)+f(c+d−x)2−12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]|. |
Proof. In view of Lemma 3.1, we have
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)∫10|Λ(t)−Λ(1−t)||f′(c+d−(tx+(1−t)y))|dt. |
Then, by using the Jensen–Mercer inequality, we obtain
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)∫10|Λ(t)−Λ(1−t)|[|f′(c)|+|f′(d)|−t|f′(x)|−(1−t)|f′(y)|]dt=(y−x)2Λ(1)[∫10|Λ(t)−Λ(1−t)|[|f′(c)|+|f′(d)|]dt−|f′(x)|∫10t|Λ(t)−Λ(1−t)|dt−|f′(y)|∫10(1−t)|Λ(t)−Λ(1−t)|dt]=(y−x)2Λ(1)[[|f′(c)|+|f′(d)|]∫10|Λ(t)−Λ(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ(t)−Λ(1−t)|dt], |
which completes the proof of Theorem 3.1.
Remark 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then,
● If ℏ(t)=tνΓ(ν), then Theorem 3.1 reduces to [43,Theorem 4].
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.1, we get
|f(c+d−x)+f(c+d−y)2−Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]|≤y−xν+k(k−k2νk)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.11) |
● If x=c and y=d, then Theorem 3.1 reduces to [21,Theorem 6].
Corollary 3.5. Let the assumptions of Theorem 3.1 be satisfied. Then, we have
|f(c+d−y)+f(c+d−x)2−1y−x∫c+d−xc+d−yf(x)dx|≤14[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.12) |
Proof. If we set ℏ(t)=t in Theorem 3.1, then we have proof of Corollary 3.5.
Remark 3.8. If we use x=c and y=d in Corollary 3.5, then Corollary 3.5 reduces to [47,Theorem 2.2].
Corollary 3.6. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality holds for conformable fractional integrals:
|f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2(yν−xν)×[[|f′(c)|+|f′(d)|]∫10|Λ1(t)−Λ1(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ1(t)−Λ1(1−t)|dt]. | (3.13) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.1, we have proof of Corollary 3.6.
Remark 3.9. If we set x=c and y=d, then we have
|f(c)+f(d)2−νdν−cν∫dcf(t)dνt|≤ν(d−c)2(dν−cν)[[|f′(c)|+|f′(d)|]∫10t|Λ2(t)−Λ2(1−t)|dt]. |
Corollary 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality for fractional integrals with exponential kernel:
|f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]|≤(ν−1)(y−x)2[exp(−1−νν(y−x))−1][[|f′(c)|+|f′(d)|]∫10|Λ3(t)−Λ3(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ3(t)−Λ3(1−t)|dt]. | (3.14) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.1, we get proof of Corollary 3.7.
Remark 3.10. If we set x=c and y=d in (3.14), then we have
|f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]|≤(ν−1)(d−c)2[exp(−1−νν(d−c))−1][[|f′(c)|+|f′(d)|]∫10t|Λ4(t)−Λ4(1−t)|dt]. |
Theorem 3.2. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′|q is convex on [c,d] for some q>1. Then, the following inequality holds for GRL:
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q, | (3.15) |
where 1p+1q=1.
Proof. In view of Lemma 3.1 and the well–known Hölder's inequality, one can obtain
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p(∫10|f′(c+d−(tx+(1−t)y))|qdt)1q. |
We can apply the Jensen–Mercer inequality due to the convexity of |f′|q, to get
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p×(∫10[|f′(c)|q+|f′(d)|q−(t|f′(x)|q+(1−t)|f′(y)|q)]dt)1q=(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q, |
which completes the proof of Theorem 3.2.
Corollary 3.8. Let the assumptions of Theorem 3.2 be satisfied, then we have
|f(c+d−y)+f(c+d−x)2−1y−x∫c+d−xc+d−yf(x)dx|≤(y−x)2(1+p)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.16) |
Remark 3.11. If we use x=c and y=d in Corollary 3.8, then Corollary 3.8 reduces to [47,Theorem 2.3].
Proof. By using ℏ(t)=t in inequality (3.15), we can obtain inequality (3.16).
Corollary 3.9. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality holds for RL:
|f(c+d−y)+f(c+d−x)2−Γ(ν+1)2(y−x)ν[RLIν(c+d−y)+f(c+d−x)+RLIν(c+d−x)−f(c+d−y)]|≤(y−x)2(νp+1)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.17) |
Proof. By setting ℏ(t)=tνΓ(ν) in inequality (3.15), we obtain inequality (3.17).
Remark 3.12. If we set x=c and y=d in Corollary 3.9, then we have
|f(c)+f(d)2−Γ(ν+1)2(d−c)ν[RLIνc+f(d)+RLIνd−f(c)]|≤(d−c)2(νp+1)1p(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.10. Let the assumptions of Theorem 3.2 be satisfied, then we have for k–RL:
|f(c+d−y)+f(c+d−x)2−Γk(ν+k)2(y−x)νk[RLIν(c+d−y)+,kf(c+d−x)+RLIν(c+d−x)−,kf(c+d−y)]|≤(y−x)2(νkp+1)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.18) |
Proof. By setting ℏ(t)=tνkkΓk(ν) in inequality (3.15), we can obtain inequality (3.18).
Remark 3.13. If we set x=c and y=d in Corollary 3.10, then we obtain
|f(c)+f(d)2−Γk(ν+k)2(d−c)νk[RLIνc+,kf(d)+RLIνd−,kf(c)]|≤(d−c)2(νkp+1)1p(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.11. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the conformable fractional integrals:
|f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2(yν−xν)×(∫10|Λ1(t)−Λ1(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.19) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.2, we get proof of Corollary 3.11.
Remark 3.14. If we set x=c and y=d in (3.19), then we have
|f(c)+f(d)2−νdν−cν∫dcf(t)dνt|≤ν(d−c)2(dν−cν)(∫10|Λ2(t)−Λ2(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.12. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the fractional integrals with exponential kernel:
|f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]|≤(ν−1)(y−x)2[exp(−1−νν(y−x))−1](∫10|Λ3(t)−Λ3(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.20) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.2, we have proof of Corollary 3.12.
Remark 3.15. If we set x=c and y=d in (3.20), then we have
|f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]|≤(ν−1)(d−c)2[exp(−1−νν(d−c))−1](∫10|Λ4(t)−Λ4(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q2)1q. |
Theorem 3.3. Let f:[c,d]→R be a differentiable function on (c,d) such that |f| is convex on [c,d]. Then, the following inequality holds for GRL:
|GRLℏG(c,d;x,y)|≤(y−x)2Δ(1)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ(t)|dt, | (3.21) |
where
|GRLℏG(c,d;x,y)|:=|12Δ(1)[GRLℏI(c+d−x+y2)+f(c+d−x)+GRLℏI(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)|. |
Proof. From Lemma 3.2, we have
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)[∫10|Δ(t)||f′(c+d−(2−t2x+t2y))|dt+∫10|Δ(t)||f′(c+d−(t2x+2−t2y))|dt] |
Then, by using the Jensen–Mercer inequality, we get
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)[∫10|Δ(t)|(|f′c|+|f′(d)|−(2−t2|f′(x)|+t2|f′(y)|))dt+∫10|Δ(t)|(|f′(c)|+|f′(d)|−(t2|f′(x)|+2−t2|f′(y)|))dt]=(y−x)4Δ(1)[∫10|Δ(t)|[2|f′(c)|+2|f′(d)|−(|f′(x)|+|f′(y)|)]dt]=(y−x)2Δ(1)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ(t)|dt, |
which completes the proof of Theorem 3.3.
Remark 3.16. Let the assumptions of Theorem 3.3 be satisfied. Then, the following special cases can be considered.
● If ℏ(t)=t, then Theorem 3.3 reduces to [43,Corollary 2].
● If ℏ(t)=t, x=c and y=d, then Theorem 3.3 reduces to [48,Theorem 2.2].
● If ℏ(t)=tνΓ(ν), then Theorem 3.3 reduces to [43,Theorem 5].
● If ℏ(t)=tνΓ(ν),x=c and y=d, then Theorem 3.3 reduces to [26,Theorem 5] with q=1.
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.3, we get
|2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)|≤k(y−x)2(ν+k)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.22) |
● If we set ℏ(t)=tνkkΓk(ν),x=c and y=d in Theorem 3.3, then we have
|2ν−kkΓk(ν+k)(d−c)νk[RLIν(c+d2)+,kf(d)+RLIν(c+d2)−,kf(c)]−f(c+d2)|≤k(d−c)2(ν+k)[|f′(c)|+|f′(d)|2]. |
Corollary 3.13. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the conformable fractional integrals:
|ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2[yν−(x+y2)ν]×[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ1(t)|dt. | (3.23) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.3, we can get proof of Corollary 3.13.
Remark 3.17. If we set x=c and y=d in (3.23), then we have
|ν[dν−(c+d2)ν]∫dcf(t)dνt|≤ν(d−c)2[dν−(c+d2)ν][|f′(c)|+|f′(d)|2]∫10|Δ2(t)|dt. |
Corollary 3.14. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the fractional integrals with exponential kernel:
|(ν−1)2[exp(−1−νν(y−x)2)−1][[expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]]−f(c+d−x+y2)|≤(ν−1)(y−x)2[exp(−1−νν(y−x)2)−1][|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ3(t)|dt. | (3.24) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.3, we can obtain proof of Corollary 3.14.
Remark 3.18. If we set x=c and y=d in (3.24), then we have
|(ν−1)2[exp(−1−νν(d−c)2)−1][[expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]]−f(c+d2)|≤(ν−1)(d−c)2[exp(−1−νν(d−c)2)−1][|f′(c)|+|f′(d)|2]∫10|Δ4(t)|dt. |
Theorem 3.4. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′|q is convex on [c,d] for some q>1. Then, the following inequality holds for GRL:
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q], | (3.25) |
where 1p+1q=1.
Proof. From Lemma 3.2 and well-known Hölder's inequality, we obtain
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(∫10|f′(c+d−(2−t2x+t2y))|qdt)1q+(∫10|f′(c+d−(t2x+2−t2y))|qdt)1q]. |
By applying the Jensen–Mercer inequality due to convexity of |f′|q, we can obtain
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(∫10[|f′(c)|q+|f′(d)|q−(2−t2|f′(x)|q+t2|f′(y)|q)]dt)1q+(∫10[|f′(c)|q+|f′(d)|q−(t2|f′(x)|q+2−t2|f′(y)|q)]dt)1q]=(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q], |
and this completes proof of the Theorem 3.4.
Remark 3.19. Let the assumptions of Theorem 3.4 be satisfied. Then, the following special cases can be considered.
● If ℏ(t)=t, then Theorem 3.4 reduces to [43,Corollary 3].
● If ℏ(t)=t,x=c and y=d, then Theorem 3.4 reduces to [48,Theorem 2.3].
● If ℏ(t)=tνΓ(ν), then Theorem 3.4 reduces to [43,Theorem 6].
● If ℏ(t)=tνΓ(ν),x=c and y=d, then Theorem 3.4 reduces to [26,Theorem 6].
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.4, we get
|2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)|≤y−x4(kνp+k)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−|f′(x)|q+3|f′(y)|q4)1q]. | (3.26) |
● If ℏ(t)=tνkkΓk(ν),x=c and y=d, then we have
|2ν−kkΓk(ν+k)(d−c)νk[RLIν(c+d2)+,kf(d)+RLIν(c+d2)−,kf(c)]−f(c+d2)|≤(d−c)4(kνp+k)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
Corollary 3.15. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds for the conformable fractional integrals:
|ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt|≤ν(y−x)4(yν−(x+y2)ν)(∫10|Δ1(t)|pdt)1p×[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q]. | (3.27) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.4, we can obtain proof of Corollary 3.15.
Remark 3.20. If we set x=c and y=d in (3.27), then we have
|ν[dν−(c+d2)ν]∫dcf(t)dνt|≤ν(d−c)4(dν−(c+d2)ν)(∫10|Δ2(t)|pdt)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
Corollary 3.16. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds for the fractional integrals with exponential kernel:
|(ν−1)2[exp(−1−νν(y−x)2)−1][[expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]]−f(c+d−x+y2)|≤(ν−1)(y−x)4[exp(−1−νν(y−x)2)−1](∫10|Δ3(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q]. | (3.28) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.4, we can obtain proof of Corollary 3.16.
Remark 3.21. If we set x=c and y=d in (3.28), then we have
|(ν−1)2[exp(−1−νν(d−c)2)−1][[expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]]−f(c+d2)|≤(ν−1)(d−c)4[exp(−1−νν(d−c)2)−1](∫10|Δ4(t)|pdt)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
In this work inequalities of Hermite-Hadamard-Mercer type via generalized fractional integrals are obtained. It is also proved that the results in this paper are generalization of the several existing comparable results in literature. As future direction, one may finds some new interesting inequalities through different types of convexities. Our results may stimulate further research in different areas of pure and applied sciences.
We want to give thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to our research project entitled: "Algunas desigualdades integrales para funciones convexas generalizadas y aplicaciones". This work is partially supported by National Natural Sciences Foundation of China (Grant No. 11971241).
The authors declare that they have no conflict of interest.
[1] | J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215. |
[2] |
M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. doi: 10.1002/mma.7048
![]() |
[3] |
M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives, Adv. Differ. Equ., 2021 (2021), 7. doi: 10.1186/s13662-020-03163-1
![]() |
[4] |
M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. doi: 10.1186/s13662-021-03226-x
![]() |
[5] |
M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 25. doi: 10.1186/s13662-020-03195-7
![]() |
[6] |
M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. doi: 10.1515/math-2021-0015
![]() |
[7] |
M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. doi: 10.1515/math-2021-0020
![]() |
[8] | M. A. Ali, M. Abbas, M. Sehar, G. Murtaza, Simpson's and Newton's type quantum integral inequalities for preinvex functions, Korean J. Math., 29 (2021), 193–203. |
[9] |
H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. doi: 10.1007/s10957-020-01726-6
![]() |
[10] | H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. |
[11] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[12] |
A. Guessab, G. Schmeisser, Sharp integral inequalities of Hermite-Hadamard type, J. Apprx. Theory, 115 (2002), 260–288. doi: 10.1006/jath.2001.3658
![]() |
[13] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comput., 73 (2004), 1365–1384. |
[14] |
A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytope, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958
![]() |
[15] | A. Guessab, Direct and converse results for generalized multivariate Jensen-type inequalities, J. Nonlinear Convex Anal., 13 (2012), 777–797. |
[16] |
M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. doi: 10.18514/MMN.2015.1099
![]() |
[17] |
P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258–262. doi: 10.1016/j.jksus.2017.07.011
![]() |
[18] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. |
[19] | K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, San Diego, 1974. |
[20] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Taylor Francis, London, 2002 [orig. ed. in Russian; Nauka i Tekhnika, Minsk, 1987]. |
[21] | M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 193–213. |
[22] |
M. Z. Sarikaya, A. Karaca, On the k-Riemann-Liouville fractional integral and applications, IJSM, 1 (2014), 033–043. doi: 10.26524/jms.2012.4
![]() |
[23] |
T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. doi: 10.1186/s13662-017-1285-0
![]() |
[24] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
![]() |
[25] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048
![]() |
[26] |
M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. doi: 10.18514/MMN.2017.1197
![]() |
[27] |
P. O. Mohammed, I. Brevik, A New Version of the Hermite-Hadamard Inequality for Riemann-Liouville Fractional Integrals, Symmetry, 12 (2020), 610. doi:10.3390/sym12040610. doi: 10.3390/sym12040610
![]() |
[28] | A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 2020, 1–18. Available from: https://doi.org/10.1002/mma.6188. |
[29] |
P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69. doi: 10.1186/s13662-020-2541-2
![]() |
[30] | P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., (2019), 1–11. Available from: https://doi.org/10.1002/mma.5784. |
[31] |
P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359. doi: 10.1186/s13660-018-1950-1
![]() |
[32] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the Generalized Hermite-Hadamard Inequalities via the Tempered Fractional Integrals, Symmetry, 12 (2020), 595. Available from: http://doi.org/10.3390/sym12040595. |
[33] |
F. Qi, P. O. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for (α,m)-convex functions, J. Inequal. Appl., 2019 (2019), 135. doi: 10.1186/s13660-019-2079-6
![]() |
[34] |
P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. doi: 10.1016/j.cam.2020.112740
![]() |
[35] |
J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. doi: 10.1515/math-2020-0038
![]() |
[36] |
D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 59 (2020), 2975–2984. doi: 10.1016/j.aej.2020.03.039
![]() |
[37] | P. M. Vasić, J. E. Pečarić, On the Jensen inequality, Univ. Beograd. Publ. Elektrotehn Fak. Ser. Mat. Fis., 634–677 (1979), 50–54. |
[38] |
A. Matković, J. Pečarić, I. Perić, A variant of Jensens inequality of Mercers type for operators with application, Linear Al. Appl., 418 (2006), 551–564. doi: 10.1016/j.laa.2006.02.030
![]() |
[39] | M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron J. Linear Al., 26 (2013), 50. |
[40] | A. McD Mercer, A variant of Jensens inequality, J. Ineq. Pure Appl. Math., 4 (2003), 73. |
[41] |
A. M. Fink, M. Jodeit Jr, Jensen inequalities for functions with higher monotonicities, Aequations Math., 40 (1990), 26–43. doi: 10.1007/BF02112278
![]() |
[42] | M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra,, 26 (2013), 50. |
[43] | H. Öǧülmüs, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Available from: DOI: 10.13140/RG.2.2.30669.79844. |
[44] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478. |
[45] | M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033–1048. |
[46] |
B. Ahmad, A Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. doi: 10.1016/j.cam.2018.12.030
![]() |
[47] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Let., 11 (1998), 91–95. |
[48] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. |
1. | Jarunee Soontharanon, Muhammad Aamir Ali, Hüseyin Budak, Pinar Kösem, Kamsing Nonlaopon, Thanin Sitthiwirattham, Behrouz Parsa Moghaddam, Some New Generalized Fractional Newton’s Type Inequalities for Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/6261970 | |
2. | Sabila Ali, Rana Safdar Ali, Miguel Vivas-Cortez, Shahid Mubeen, Gauhar Rahman, Kottakkaran Sooppy Nisar, Some fractional integral inequalities via $ h $-Godunova-Levin preinvex function, 2022, 7, 2473-6988, 13832, 10.3934/math.2022763 | |
3. | Dafang Zhao, Muhammad Aamir Ali, Chanon Promsakon, Thanin Sitthiwirattham, Some Generalized Fractional Integral Inequalities for Convex Functions with Applications, 2022, 6, 2504-3110, 94, 10.3390/fractalfract6020094 | |
4. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830 | |
5. | Miguel Vivas-Cortez, Seth Kermausuor, Juan E. Nápoles Valdés, 2022, Chapter 16, 978-981-19-0667-1, 275, 10.1007/978-981-19-0668-8_16 | |
6. | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon, On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals, 2023, 8, 2473-6988, 1833, 10.3934/math.2023094 | |
7. | Henok Desalegn Desta, Eze R. Nwaeze, Tadesse Abdi, Jebessa B. Mijena, New Generalized Hermite–Hadamard–Mercer’s Type Inequalities Using (k, ψ)-Proportional Fractional Integral Operator, 2023, 3, 2673-9321, 49, 10.3390/foundations3010005 | |
8. | Muhammad Adil Khan, Saeed Anwar, Sadia Khalid, Zaid Mohammed Mohammed Mahdi Sayed, Erhan Set, Inequalities of the Type Hermite–Hadamard–Jensen–Mercer for Strong Convexity, 2021, 2021, 1563-5147, 1, 10.1155/2021/5386488 | |
9. | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Some new generalized $ \kappa $–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications, 2021, 7, 2473-6988, 3203, 10.3934/math.2022177 | |
10. | Muhammad Aamir Ali, Christopher S. Goodrich, Hüseyin Budak, Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals, 2023, 2023, 1029-242X, 10.1186/s13660-023-02953-x | |
11. | Shahid Mubeen, Rana Safdar Ali, Yasser Elmasry, Ebenezer Bonyah, Artion Kashuri, Gauhar Rahman, Çetin Yildiz, A. Hussain, On Novel Fractional Integral and Differential Operators and Their Properties, 2023, 2023, 2314-4785, 1, 10.1155/2023/4165363 | |
12. | Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331 | |
13. | Bandar Bin-Mohsin, Muhammad Zakria Javed, Muhammad Uzair Awan, Awais Gul Khan, Clemente Cesarano, Muhammad Aslam Noor, Exploration of Quantum Milne–Mercer-Type Inequalities with Applications, 2023, 15, 2073-8994, 1096, 10.3390/sym15051096 | |
14. | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin, Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities, 2024, 9, 2473-6988, 17696, 10.3934/math.2024860 | |
15. | DAFANG ZHAO, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, ZAI-YIN HE, SOME BULLEN-TYPE INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRALS, 2023, 31, 0218-348X, 10.1142/S0218348X23400601 | |
16. | Muhammad Samraiz, Atika Imran, Saima Naheed, Inverse cosine convex functions: Algebraic, geometric, and analytic perspectives, 2024, 0170-4214, 10.1002/mma.10518 | |
17. | Sofia Ramzan, Muhammad Uzair Awan, Miguel Vivas-Cortez, Hüseyin Budak, On Fractional Ostrowski-Mercer-Type Inequalities and Applications, 2023, 15, 2073-8994, 2003, 10.3390/sym15112003 | |
18. | Bandar Bin-Mohsin, Muhammad Zakria Javed, Muhammad Uzair Awan, Hüseyin Budak, Awais Gul Khan, Clemente Cesarano, Muhammad Aslam Noor, Unified inequalities of the $ {\mathfrak{q}} $-Trapezium-Jensen-Mercer type that incorporate majorization theory with applications, 2023, 8, 2473-6988, 20841, 10.3934/math.20231062 | |
19. | Miguel Vivas-Cortez, Muhammad Samraiz, Muhammad Tanveer Ghaffar, Saima Naheed, Gauhar Rahman, Yasser Elmasry, Exploration of Hermite–Hadamard-Type Integral Inequalities for Twice Differentiable h-Convex Functions, 2023, 7, 2504-3110, 532, 10.3390/fractalfract7070532 | |
20. | Miguel Vivas-Cortez, Muhammad Uzair Awan, Usama Asif, Muhammad Zakria Javed, Hüseyin Budak, Advances in Ostrowski-Mercer Like Inequalities within Fractal Space, 2023, 7, 2504-3110, 689, 10.3390/fractalfract7090689 | |
21. | Muhammad Samraiz, Saima Naheed, Ayesha Gul, Gauhar Rahman, Miguel Vivas-Cortez, Innovative Interpolating Polynomial Approach to Fractional Integral Inequalities and Real-World Implementations, 2023, 12, 2075-1680, 914, 10.3390/axioms12100914 | |
22. | Jianqiang Xie, Muhammad Aamir Ali, Hüseyin Budak, Michal Fečkan, Thanin Sitthiwirattham, FRACTIONAL HERMITE–HADAMARD INEQUALITY, SIMPSON’S AND OSTROWSKI’S TYPE INEQUALITIES FOR CONVEX FUNCTIONS WITH RESPECT TO A PAIR OF FUNCTIONS, 2023, 53, 0035-7596, 10.1216/rmj.2023.53.611 | |
23. | Muhammad Ali, Hüseyin Budak, Michal Feckan, Nichaphat Patanarapeelert, Thanin Sitthiwirattham, On some Newton’s type inequalities for differentiable convex functions via Riemann-Liouville fractional integrals, 2023, 37, 0354-5180, 3427, 10.2298/FIL2311427A | |
24. | Abdul Mateen, Zhiyue Zhang, Serap Özcan, Muhammad Aamir Ali, Generalization of Hermite–Hadamard, trapezoid, and midpoint Mercer type inequalities for fractional integrals in multiplicative calculus, 2025, 2025, 1687-2770, 10.1186/s13661-025-02008-8 |