In this manuscript, we investigate a class of second-order impulsive fractional neutral stochastic differential equations (IFNSDEs) driven by Poisson jumps in Banach space. Firstly, sufficient conditions of the existence and the uniqueness of the mild solution for this type of equations are driven by means of the successive approximation and the Bihari's inequality. Next we get the stability in mean square of the mild solution via continuous dependence on initial value.
Citation: Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai. Well posedness of second-order impulsive fractional neutral stochastic differential equations[J]. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
[1] | Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780 |
[2] | Yongxiang Zhu, Min Zhu . Well-posedness and order preservation for neutral type stochastic differential equations of infinite delay with jumps. AIMS Mathematics, 2024, 9(5): 11537-11559. doi: 10.3934/math.2024566 |
[3] | Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549 |
[4] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[5] | Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives. AIMS Mathematics, 2024, 9(5): 12375-12398. doi: 10.3934/math.2024605 |
[6] | Chunli You, Linxin Shu, Xiao-bao Shu . Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403 |
[7] | A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed . Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290 |
[8] | Jiali Wu, Maoning Tang, Qingxin Meng . A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon. AIMS Mathematics, 2023, 8(2): 4042-4078. doi: 10.3934/math.2023202 |
[9] | Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686 |
[10] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
In this manuscript, we investigate a class of second-order impulsive fractional neutral stochastic differential equations (IFNSDEs) driven by Poisson jumps in Banach space. Firstly, sufficient conditions of the existence and the uniqueness of the mild solution for this type of equations are driven by means of the successive approximation and the Bihari's inequality. Next we get the stability in mean square of the mild solution via continuous dependence on initial value.
In recent years, fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Classical theory and applications of FDEs are presented in the monographs [8,11,13]. Stochastic differential equations (SDEs) are the proper apparatus to model systems with external noise and suffered by uncertain or random facts, for more details on SDEs readers can can refer to [1,2,5,6,10,14]. Very recently, many researchers were devoted to study impulsive fractional integro differential evolution equations Xie [18] investigated as follows,
Dαt[y′(t)−g(t,yt)]=Ay(t)+f(t,yt,By(t)), t∈J, t≠tk,Δy(ti)=Ii(yti), Δy′(ti)=Ji(xti), i=1,2,...,m,y0=φ∈B, y′0=y1∈H, |
where By(t)=∫t0k(t,s)y(s)ds, k∈C(D,R+), D={(t,s):0≤s≤t≤b}.
On the other hand, Poisson jumps processes are used in modeling for several real life situations. Moreover, many practical applications are used in the field of market crashes, earthquakes, epidemics, etc, . In dynamical systems, a jump term is included to make the model a realistic one. Many literature have been study SDEs driven by Poisson jumps has [3,4,7,9,12,15,16,17]. However, there is no literature in IFNSDEs, we use of the successive method and Bihari's inequality. This paper is concerned with IFNSDEs driven by Poisson jump,
Dαt[y′(t)−g(t,yt)]=Ay(t)+f(t,yt)+σ(t,yt)dw(t)+∫Uh(t,yt,u)˜N(ds,du),J=t∈[0,a],Δy(tk)=Ik(ytk), Δy′(tk)=Jk(ytk),k=1,2,...,m,y0=φ∈B, y′0=y1∈H. | (1.1) |
Here, Dαt denotes the Caputo fractional derivative of order 0<α<1; A:D(A)⊂X→X denotes sectorial operator. The nonlinear maps f,g:[0,a]×B→X, σ:[0,a]×B→L(Y,X) and h:[0,a]×B×U→X are appropriate mappings. Let B is an abstract phase space. Let yt:(−∞,0]→X, yt(s)=y(t+s), s≤0∈B. In ˜N(ds,du)=N(ds,du)−v(du)ds. the Poisson measure ˜N(dt,du) denotes the Poisson counting measure associated with a characteristic measure λ. Moreover, Δy(tk)=y(t+k)−y(t−k) for 0≤t0<t1<⋯<tn<tn+1=a, and y(t+k) and y(t−k) denote the right and the left limits of y(t) at t=tk, respectively.
In this section, we dealt with basic definitions for FC and some of the lemmas that are useful for further derivation, (see [13,19]).
We introduce the space PC formed by all X-valued stochastic processes {y(t):t∈[0,a]} such that y is continuous at t≠tk, y(t−k)=y(tk) and y(t+k) exist for all k=1,2,...,m. When PC is endowed with the norm ‖y‖PC=(sups∈[0,a]E‖y(s)‖2)1/2, (PC,‖⋅‖PC) is a Banach space. Next, we present an axiomatic definition of the phase space B are established for ℑ0-measurable functions from (−∞,0]→X, with a semi norm ‖⋅‖B which satisfies:
(H1) If y:(−∞,a]→X, a>0 is s.t y0∈B and y|[0,a]∈PC, then, for every t∈[0,a], if the following conditions hold:
(1)yt∈B
(2)|y(t)|<K‖yt‖B,
(3)‖yt‖B≤M(t)sup0≤s≤t|y(s)|+N(t)‖y0‖B
where K>0, M,N:[0,+∞)→[1,+∞) are mappings. M is continuous and N is locally bounded.
(H2) The space B is complete.
Lemma 2.1. Let y:(−∞,a]→X be an ℑt-adapted measurable process s.t y0=φ∈L2(Ω,B),
E‖ys‖B≤NaE‖φ‖B+MaE(sup0≤s≤a‖y(s)‖), | (2.1) |
where Na=supt∈[0,a]{N(t)} and Ma=supt∈[0,a]{M(t)}.
Denoted by M2((−∞,a],X), the space of X-valued cadlag processes y={y(t)}−∞<t<a s.t
(ⅰ) y0=φ∈B, y(t) is ℑt-adapted on [0,a]
(ⅱ) If M2((−∞,a],X) with the norm
‖y‖2M2=E‖φ‖2B+E(supt∈[0,a]‖y(t)‖2)<∞. | (2.2) |
Definition 2.2. An X-valued stochastic process y(t),(t∈J) is called a mild solution of (1.1), if
(i) y(t) is measurable and ℑt-adapted for t∈[0,a],
(ii) y0=φ∈B.
(iii) For t∈[0,a], a.s
y(t)={Sα(t)φ(0)+∫t0Sα[y1−g(0,φ)]ds+∫t0Sα(t−s)g(s,ys)ds+∑tk<tSα(t−tk)Ik(ytk)+∑tk<t∫ttkSα(t−s)[Jk(ytk)−g(tk,ytk+Ik(ytk))]ds+∫t0Tα(t−s)f(s,ys)ds+∫t0Tα(t−s)σ(s,ys)dw(s)+∫t0∫UTα(t−s)h(s,ys,u)˜N(ds,du), | (2.3) |
where Sα(t),Tα(t):R+→L(X,X)(ζ=1+α) are given by
Sα(t)=Eα,1(Atα)=12πi∫Breλtλα−1λα−Adλ, | (2.4) |
Tα(t)=tα−1Eα,α(Atα)=12πi∫Breλtλα−Adλ, | (2.5) |
and Br denotes the Bromwich path [18].
In order to prove our main results, we enforce the following hypotheses,
(H3)A is the infinitesimal generator of an α-order cosine families Sα(t) and Tα(t) on X and ∃L>0, La≥1
‖Sα(t)‖≤ L‖Tα(t)‖≤ tα−1La |
(H4)g,f:[0,a]×B→X, σ:[0,a]×B→L02 and h:[0,a]×B→X satisfy
(1)‖g(t,y)−g(t,z)‖2∨‖f(t,y)−f(t,z)‖2∨‖σ(t,y)−σ(t,z)‖2≤k(‖y−z‖2B),t∈[0,a],y,z∈B,(2)∫U‖h(t,y,u)−h(t,z,u)‖2v(du)ds∨(∫U‖h(t,y,u)−h(t,z,u)‖4v(du)ds)1/2≤k(‖y−z‖2B),t∈[0,a],y,z∈B,(3)(∫U‖h(t,y,u)‖4v(du)ds)1/2≤k|y|2. |
Here k(⋅) is a concave, continuous and nondecreasing function from R+ to R+ s.t k(0)=0, k(u)>0 for u>0 and ∫0+dsk(s)=∞.
(H5)Ik,Jk:B→X are continuous and there are positive constants pk,qk>0 such that for each φ,ϕ∈B,
‖Ik(φ)−Ik(ϕ)‖2≤pk‖φ−ϕ‖2B,‖Jk(φ)−Jk(ϕ)‖2≤qk‖φ−ϕ‖2B,(k=1,2,...,m). |
(H6)‖g(t,0)‖2∨‖f(t,0)‖2∨‖σ(t,0)‖2∨∫U‖h(t,o,u)‖2≤k0, where k0 is a positive constant, Ik(0)=0, Jk(0)=0, (k=1,2,...,m).
Now, The successive approximations are considered as follows,
y0(t)=Sα(t)φ(0)+∫t0Sα(s)[y1−g(0,φ)]ds,t∈[0,a], | (3.1) |
yn(t)=Sα(t)φ(0)+∫t0Sα(s)[y1−g(0,φ)]ds+∑tk<tSα(t−tk)Ik(yn−1tk)+∑tk<tSα(t−tk)[Jk(yn−1tk)−g(tk,yn−1tk+Ik(yn−1ytk))+g(tk,yn−1tk)]ds+∫t0Sα(t−s)g(s,yn−1s)ds+∫t0Tα(t−s)f(s,yn−1s)ds+∫t0Tα(t−s)σ(s,yn−1s)dw(s)+∫t0∫UTα(t−s)h(s,yn−1s,u)˜N(ds,du),t∈J, | (3.2) |
yn(t)=φ(t),−∞<t≤0,n≥1. | (3.3) |
Lemma 3.1. Suppose that (H3)−(H6) hold, and
8mL2Ma∑tk<tpk+16mL2a2Ma∑tk<tqk<1, |
then yn(t)∈M2((−∞,a];X),∀t∈(−∞,a], n≥0,
E‖yn(t)‖2≤˜M,n=1,2,⋯, | (3.4) |
here ˜M>0.
Proof. Let y0(t)∈M2((−∞,a];X) and
E‖yn(t)‖2≤8E‖Sα(t)φ(0)‖2+8E‖∫t0Sα(s)[y1−g(0,φ)]ds‖2+8E‖∑tk<tSα(t−tk)Ik(yn−1tk)‖2+8E‖∑tk<t∫ttkSα(t−s)[Jk(yn−1tk)−g(tk,yn−1tk+Ik(yn−1tk))+g(tk,yn−1tk)]ds‖2+8E‖∫t0Sα(t−s)g(s,yn−1s)ds‖2+8E‖∫t0Tα(t−s)f(s,yn−1s)ds‖2+8E‖∫t0Tα(t−s)σ(s,yn−1s)dw(s)‖2+8E‖∫t0Tα(t−s)h(s,yn−1s,u)˜N(ds,du)‖2=88∑i=1Gi. |
It's easy to get the estimations
G1≤8L2E‖φ(0)‖2. |
Next,
G2≤24L2a2(‖y1‖2+k(‖φ‖2B)+k0), |
and
G3≤8mL2∑tk<tE‖Ik(yn−1tk)‖2B≤8mL2∑ts<tpkE‖yn−1tk‖2B. |
By (H3)−(H6) and ‖Sα(t)‖L(X,X)≤L, we have
G4≤16E‖∑tk<tSα(t−s)Jk(yntk)ds‖2+16E‖∑tk<tSα(t−s)[g(tk,yn−1tk+Ik(yn−1tk))−g(tk,yn−1tk)]ds‖2≤16mL2a2∑tk<tqkE‖yn−1tk‖2B+16mL2a∑tk<t∫ttkk(Epk‖yn−1tk‖2B)ds. |
and
G5≤8E‖∫t0Sα(t−s)g(s,yn−1s)ds‖2≤16L2aE∫t0[‖g(s,yn−1s)−g(s,0)‖2+‖g(s,0)‖2]ds≤16L2a∫t0k(E‖yn−1s‖2B)ds+16L2a2k0. |
By (H3)−(H6), we have
G6≤8E‖∫t0Tα(t−s)f(s,yn−1s)ds‖2≤8L2aa2α−12α−1E∫t0‖f(s,yn−1s)−f(s,0)+f(s,0)‖2ds≤16L2aa2α−12α−1∫t0k(E‖yn−1s‖2B)ds+16L2aa2α2α−1k0. |
Next, by (H3)−(H6), Holder inequality and B-D-G inequality, we obtain
G7≤8E‖∫t0Tα(t−s)σ(s,yn−1s)dw(s)‖2≤8L2aa2α−2E∫t0‖σ(s,yn−1s)−σ(s,0)+σ(s,0)‖2L02ds≤16L2aa2α−2∫t0k(E‖yn−1s‖2B)ds+16L2aa2α−1k0. |
Finally,
G8≤8E‖∫t0∫UTα(t−s)h(s,yn−1s,u)˜N(ds,du)‖2≤8L2aa2α−2[E∫t0∫U‖h(s,yn−1,u)‖2v(du)ds+E(∫t0∫U‖h(s,yn−1,u)‖4v(du)ds)1/2]≤8L2aa2α−2[E∫t0∫U‖h(s,yn−1,u)−h(s,0,u)+h(s,0,u)‖2v(du)ds+E(∫t0∫U‖h(s,yn−1,u)‖4v(du)ds)1/2]≤16L2aa2α−2∫t0k(E‖yn−1s‖2B)ds+16L2aa2α−1k0+8L2aa2α−2∫t0k(E‖yn−1s‖2B)ds≤24L2aa2α−2∫t0k(E‖yn−1s‖2B)ds+16L2aa2α−1k0. |
Let
Q1=8L2E‖φ(0)‖2+24L2a2(‖y1‖2+k(‖φ‖2B)+k0)+16L2a2k0+16L2aa2α2α−1k0+16L2aa2α−1k0. |
From the above estimations, together yields
E‖yn(t)‖2≤Q1+8mL2∑tk<tpkE‖yn−1tk‖2B+16mL2a2∑tk<tqkE‖yn−1tk‖2B+16mL2a∑tk<t∫ttkk(Epk‖yn−1tk‖2B)ds+(16L2a+16L2aa2α−2+16L2aa2α−12α−1+24L2aa2α−2)∫t0k(E‖yn−1s‖2B)ds. |
By using Lemma 2.1 and k(⋅), we have to show that a pair of +ve constants β and λ s.t k(u)≤β+λu, ∀ u≥0. Then
Esup0≤s≤t‖yn(s)‖2≤Q1+8mL2Na∑tk<tpkE‖φ‖B+16mL2a2∑tk<tqkE‖φ‖B+16m2L2a2a+(16L2a+16L2aa2α−2+16L2aa2α−12α−1+24L2aa2α−2)bβ+(8mL2Ma∑tk<tpk+16mL2a2Ma∑tk<tqk)Esup0≤s≤t‖yn(s)‖2+(16mL2a∑tk<tpk+16L2a+16L2aa2α−2+16L2aa2α−12α−1+24L2aa2α−2)λE∫t0sup0≤s≤t‖yn(s)‖2ds, |
and
max1≤n≤˜k{Esup0≤s≤t‖yn(s)‖2}≤Q1+8mL2Na∑tk<tpkE‖φ‖B+16mL2a2∑tk<tqkE‖φ‖B+16m2L2a2β+(16L2a+16L2aa2α−2+16L2aa2α−12α−1+24L2aa2α−2)bβ+(8mL2Ma∑tk<tpk+16mL2a2Ma∑tk<tqk)max1≤n≤˜k{Esup0≤s≤t‖yn(s)‖2}+(16mL2a∑tk<tpk+16L2a+16L2aa2α−2+16L2aa2α−12α−1+24L2aa2α−2)λ∫t0max1≤n≤˜k{Esup0≤s≤t‖yn(s)‖2}ds, |
where ˜k>0. Let
Q2=Q1+8mL2Na∑tk<tpkE‖φ‖B+16mL2a2∑tk<tqkE‖φ‖B1−8mL2Ma∑tk<tpk−16mL2a2Ma∑tk<tqk+16m2L2a2β+(16L2a+16L2aa2α−2+16L2aa2α−12α−1+24L2aa2α−2)1−8mL2Ma∑tk<tpk−16mL2a2Ma∑tk<tqkQ3=(16mL2a∑tk<tpk+16L2a+16L2aa2α−2+16L2aa2α−12α−1+24L2aa2α−2)λ1−8mL2Ma∑tk<tpk−16mL2a2Ma∑tk<tqk. |
Then
max1≤n≤˜k{Esup0≤s≤t‖yn(s)‖2}≤Q2+Q3∫t0max1≤n≤˜k{Esup0≤s≤t‖yn(s)‖2}ds. |
Using Gronwall inequality,
max1≤n≤˜k{Esup0≤s≤t‖yn(s)‖2}≤Q2eQ3. |
Due to the arbitrary of ˜k, we have
Esup0≤s≤t‖yn(s)‖2≤Q2eQ3=M′,0≤t≤a,n≥1. |
Consequently,
‖yn(s)‖2≤E‖φ‖2B+E(sup0≤s≤t‖yn(s)‖2)≤E‖φ‖2B+M′<∞, |
let ˜M=E‖φ‖2B+M′. Hence the proof.
Theorem 3.2. If (H3)−(H6) and
max{8mL2Ma∑tk<tpk+16mL2a2Ma∑tk<tqk,8mL2∑tk<tpk+16mL2a∑tk<tqk}<1 | (3.5) |
hold, then the system (1.1) has a unique mild solution of (−∞,a].
Proof. Let
E‖yn+m(t)−yn(t)‖2=8E‖∑tk<tSα(t−tk)[Ik(ym+n−1tk)−Ik(yn−1tk)]‖2+8E‖∑tk<t∫ttkSα(t−s)[Jk(ym+n−1tk)−Jk(yn−1tk)]‖2+8E‖∑tk<t∫ttkSα(t−s)[g(tk,ym+n−1tk+Ik(ym+n−1tk))−g(tk,yn−1tk+Ik(yn−1tk))]ds‖2+8E‖∑tk<t∫ttkSα(t−s)[g(tk,ym+n−1tk)−g(tk,yn−1tk)]ds‖2+8E‖∫t0Sα(t−s)[g(tk,ym+n−1tk)−g(tk,yn−1tk)]ds‖2+8E‖∫t0Tα(t−s)[f(tk,ym+n−1tk)−f(tk,yn−1tk)]ds‖2+8E‖∫t0Tα(t−s)[σ(tk,ym+n−1tk)−σ(tk,yn−1tk)]dw(s)‖2+8E‖∫t0∫UTα(t−s)[h(tk,ym+n−1tk,u)−h(tk,yn−1tk,u)˜N(ds,du)]ds‖2 |
By the fact (H3)−(H6), we have
E‖yn+m(t)−yn(t)‖2≤8mL2E∑tk<tpksup0≤s≤t‖ym+n−1(s)−yn−1(s)‖2+8mL2aE∑tk<tqksup0≤s≤t‖ym+n−1(s)−yn−1(s)‖2+8mL2∑tk<t∫ttkk(pkEsup0≤s≤t‖ym+n−1(s)−yn−1(s)‖2)ds+8mL2∑tk<t∫ttkk(Esup0≤s≤t‖ym+n−1(s)−yn−1(s)‖2)ds+8L2a∫ttkk(Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds+8mL2a2α−12α−1∫t0k(Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds+8mL2a2α−2∫t0k(Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds+32mL2a2α−2∫t0k(Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds=(8mL2∑tk<tpk+8mL2a∑tk<tqk)Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds+8mL2∑tk<t∫ttkk((1+pk)Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds)+(8L2a+8mL2a2α−12α−1+8mL2a2α−2+32mL2a2α−2)×∫t0k(Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds |
Let ˉp=max1≤k≤mpk. Since
∫ttkk((1+pk)Esup0≤r≤tk‖ym+n−1(r)−yn−1(r)‖2)ds)≤∫ttkk((1+pk)Esup0≤r≤s‖ym+n−1(r)−yn−1(r)‖2)ds)≤∫ttkk((1+ˉp)Esup0≤r≤s‖ym+n−1(r)−yn−1(r)‖2)ds) |
and ˜k∘c(⋅)=k(c(⋅)) is a concave function, we get
Esup0≤s≤t‖yn+m(s)−yn(s)‖2≤(8mL2∑tk<tpk+8mL2a∑tk<tqk)Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds+(16L2a+8mL2a2α−12α−1+8mL2a2α−2+32mL2a2α−2)∫t0˜k(Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds. | (3.6) |
Hence,
Esup0≤s≤t‖yn+m(s)−yn(s)‖2−(8mL2∑tk<tpk+8mL2a∑tk<tqk)Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds≤(16L2a+8mL2a2α−12α−1+8mL2a2α−2+32mL2a2α−2)∫t0˜k(Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds |
Using Lemma 3.1, we get
Esup0≤s≤t‖yn+m(s)−yn(s)‖2−(8mL2∑tk<tpk+8mL2a∑tk<tqk)Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2)ds≤(16L2a+8mL2a2α−12α−1+8mL2a2α−2+32mL2a2α−2)∫t0˜k(2M′)ds≤Q4˜k(2M′)t=Q5t. |
Define
φ1(t)=Q5t,φn+1(t)=Q4∫t0˜k(φn(s))ds,n≥1. |
Choose a1∈[0,a) such that Q4˜k(Q5t)≤Q5, ∀0≤t≤a1.
For any t∈[0,a1), {φn(t)} is a decreasing sequence. In fact
φ2(t)=Q4∫t0˜k(φ1(s))ds=Q4∫t0˜k(Q5(s))ds≤∫t0Q5ds=φ1(t). |
By induction, we get
φn+1(t)=Q4∫t0˜k(φn(s))ds≤Q4∫t0˜k(Qn−1(s))ds=φn(t), ∀0≤t≤a1. | (3.7) |
Therefore, the statement is true and we can define the function ϕ(t) as
ϕ(t)=limn→∞φn(t)=limn→∞Q4∫t0˜k(φn−1(s))ds=limn→∞Q4∫t0˜k(ϕ(s))ds,0≤t≤a1. |
By the Bihari's inequality, we have ϕ(t)=0∀ 0≤t≤a1. It means that for all 0≤t≤a1,
limn→∞[Esup0≤s≤t‖yn+m(s)−yn(s)‖2−(8mL2∑tk<tpk+8mL2a∑tk<tqk)Esup0≤s≤t‖ym+n−1(r)−yn−1(r)‖2]=0. | (3.8) |
By using the condition 8mL2∑tk<tpk+8mL2a∑tk<tqk<1 and (3.8), we obtain
limn→∞E‖yn+m(s)−yn(s)‖2=0,0≤t≤a1, | (3.9) |
this implies that {yn(t)} is a Cauchy sequence in L2(Ω,X). Let limn→∞yn(t)=y(t), obviously,
‖y(t)‖2≤˜M,0≤t≤a1. | (3.10) |
Taking limits on both side of equation (3.2), ∀t∈[0,a1], we have
y(t)={Sα(t)φ(0)+∫t0Sα[y1−g(0,φ)]ds+∫t0Sα(t−s)g(s,ys)ds+∑tk<tSα(t−tk)Ik(ytk)+∑tk<t∫ttkSα(t−s)[Jk(ytk)−g(tk,ytk+Ik(ytk))]ds+∫t0Tα(t−s)f(s,ys)ds+∫t0Tα(t−s)σ(s,ys)dw(s)+∫t0∫UTα(t−s)h(s,ys,u)˜N(ds,du), | (3.11) |
so we have presented the existence of the mild solution of (1.1) on [0, a_{1}] . By iteration we can get the existence of the mild solution of (1.1) on [0, a] .
Suppose that \mathrm{y}_{1}, \mathrm{y}_{2} are two solutions of (1.1). Using the similar discussion as (3.8), we get
\begin{align} &\left[1-(8m\mathrm{L}^{2}\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{k}})\right]\mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}_{1}- \mathrm{y}_{2}\right\|^{2})d\mathrm{s}\\ &\leq\big(16\mathrm{L}^{2}a+8m\mathrm{L}^{2}\frac{a^{2\alpha-1}}{2\alpha-1}+8m\mathrm{L}^{2}a^{2\alpha-2} +32m\mathrm{L}^{2}a^{2\alpha-2}\big)\int^{\mathrm{t}}_{0}\tilde{\mathrm{k}}(\mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}_{1}- \mathrm{y}_{2}\right\|^{2})d\mathrm{s} \end{align} | (3.12) |
the Bihari's inequality implies \mathbb{E}\left\|\mathrm{y}_{1}- \mathrm{y}_{2}\right\|^{2} = 0 , and we have shown the existence and the uniqueness of the mild solution of (1.1).
In this section, we have given the continuous dependence of solutions on the initial values by means of the Bihari's inequality. We first propose the following assumption on \mathfrak{g} instead of ({\bf{H4}}) ,
({\bf{H7}}) \; \mathfrak{g}:[0, a]\times \mathscr{B}\rightarrow \mathfrak{X} satisfy
\begin{eqnarray*} \left\|\mathfrak{g}(\mathrm{t},\varphi)-\mathfrak{g}(\mathrm{t},\phi)\right\|^{2}\leq \mathrm{k}_{1}\left\|\varphi-\phi\right\|^{2}_{\mathcal{B}},\; \; \mathrm{k}_{1} > 0. \end{eqnarray*} |
Definition 4.1. A mild solution \mathrm{y}^{\varphi, \mathrm{y}_{1}}(\mathrm{t}) of Cauchy problem (1.1) with initial value (\varphi, \mathrm{y}_{1}) is known as stable in square if \forall \ \epsilon > 0, \ \ni \; \delta > 0 s.t
\begin{eqnarray} \mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq a}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{z}_{1}}(\mathrm{s})\right\|\leq \epsilon, \; \; \; \mathbb{E}\left\|\varphi-\phi\right\|^{2}_{\mathcal{B}}+\mathbb{E}\left\|\mathrm{y}_{1}-\mathrm{z}_{1}\right\|^{2} < \delta, \end{eqnarray} | (4.1) |
where \mathrm{z}^{\varphi, \mathrm{z}_{1}}(\mathrm{t}) is further solution of (1.1) with initial condition (\varphi, \mathrm{z}_{1}) .
Theorem 4.2. Assume 3(8m\mathrm{L}^{2}\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{s}}) < 1 , by Theorem 3.2 and ({\bf{H7}}) , are satisfied, then the mild solution of (1.1) is stable.
Proof. Using similar argument of Theorem 3.2, we get \forall 0\leq t \leq a ,
\begin{eqnarray*} \mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{z}_{1}}(\mathrm{s})\right\|^{2}&\leq&3\mathbb{E}\left\|\mathrm{S}_{\alpha}(\mathrm{t})\varphi(0)-\mathrm{S}_{\alpha}(\mathrm{t})\phi(0)\right\|^{2}+3\mathbb{E}\left\|\int^{\mathrm{t}}_{0}\mathrm{S}_{\alpha}(s)(\left\|\mathrm{y}_{1}-\mathrm{z}_{1}\right\|_{\mathfrak{X}}+\left\|\varphi-\phi\right\|_{\mathcal{B}})d\mathrm{s}\right\|^{2}\\ &+&3(8m\mathrm{L}^{2}\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{k}})\mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{z}_{1}}(\mathrm{s})\right\|^{2}\\ &+&\big(16\mathrm{L}^{2}a+16m^{2}\mathrm{L}^{2}+16m\mathrm{L}^{2}+8m\mathrm{L}\frac{a^{2\alpha-1}}{2\alpha-1}+8m\mathrm{L}^{2}a^{2\alpha-2}\\ &+&32m\mathrm{L}^{2}a^{2\alpha-2}\big)\int^{\mathrm{t}}_{0}\tilde{k}(\mathbb{E}\sup\limits_{0\leq r \leq s}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})\right\|^{2})d\mathrm{s} \end{eqnarray*} |
Then we get
\begin{eqnarray*} \mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})\right\|^{2}&\leq&\frac{v}{\mathcal{G}}(\left\|\mathrm{y}_{1}-\mathrm{z}_{1}\right\|^{2}+\left\|\varphi-\phi\right\|_{\mathcal{B}})+\frac{\tilde{v}}{\mathcal{G}}\int^{\mathrm{t}}_{0}\tilde{\mathrm{k}}(\mathbb{E}\sup\limits_{0\leq r \leq \mathrm{s}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})\right\|^{2})d\mathrm{s} \end{eqnarray*} |
where v = \max\left\{6\mathrm{L}^{2}, 6\mathrm{L}^{2}a^{2}k_{1}+3\mathrm{L}^{2}\right\} , \tilde{v} = 3\big(16\mathrm{L}^{2}a+16m^{2}\mathrm{L}^{2}+16m\mathrm{L}^{2}+8m\mathrm{L}\frac{a^{2\alpha-1}}{2\alpha-1}+8m\mathrm{L}^{2}a^{2\alpha-2}+32m\mathrm{L}^{2}a^{2\alpha-2}\big) , and \mathcal{G} = 1-3(8m\mathrm{L}^{2}\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{k}}) . The function \tilde{\mathrm{k}}(u) is defined in (3.6) which has the Lemma 2.4 in [19]. For \epsilon > 0 , letting \epsilon_{1} = \frac{1}{2}\epsilon , we have \lim_{s\rightarrow 0}\int^{\epsilon_{1}}_{s}\frac{1}{\tilde{\mathrm{k}}(u)}du = \infty . \exists \; \delta and \delta < \epsilon_{1} such that \int^{\epsilon_{1}}_{\mathrm{s}}\frac{1}{\tilde{\mathrm{k}}(u)}du\geq \mathfrak{T} . Let u_{0} = \frac{v}{\Lambda}(\left\|\mathrm{y}_{1}-\mathrm{y}_{1}\right\|^{2}+\left\|\varphi-\phi\right\|_{\mathcal{B}}) , u(\mathrm{t}) = \mathbb{E}\sup_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi, \mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi, \mathrm{y}_{1}}(\mathrm{s})\right\| , v(\mathrm{t}) = 1 . If u_{0}\leq \delta \leq \epsilon_{1} , the Lemma 2.5 in [19], shows that \int^{\epsilon_{1}}_{u_{0}}\frac{1}{\tilde{\mathrm{k}}(u)}du\geq \int^{\epsilon_{1}}_{\delta}\frac{1}{\tilde{\mathrm{k}}(u)}du\geq \mathfrak{T} = \int^{a}_{0}v(\mathrm{s})d\mathrm{s} . So for any \mathrm{t}\in [0, a] , the estimate u(\mathrm{t})\leq \epsilon_{1}\leq \epsilon holds. Hence the proof.
In this manuscript, we investigate a class of second-order impulsive fractional neutral stochastic differential equations (IFNSDEs) driven by Poisson jumps in Banach space. Firstly, sufficient conditions of the existence and the uniqueness of the mild solution for this type of equations are drived by means of the successive approximation and the Bihari's inequality. Next we get the stability in mean square of the mild solution via continuous dependence on initial value are established.
The authors thank the referees for useful comments and suggestion which led to an improvement in the quality of this article.
All authors declare no conflicts of interest in this paper.
[1] |
A. Anguraj, K. Ramkumar, E. M. Elsayed, Existence, uniqueness and stability of impulsive stochastic partial neutral functional differential equations with infinite delays driven by a fractional Brownian motion, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 327–337. doi: 10.5890/DNC.2020.06.012
![]() |
[2] | A. Anguraj, K. Ravikumar, Existence and stability results of impulsive stochastic partial neutral functional differential equations with infinite delays and Poisson jumps, Journal of Applied Nonlinear Dynamics, 9 (2020), 245–255. |
[3] |
A. Anguraj, K. Ravikumar, Existence and stability results for impulsive stochastic functional integrodifferential equations with Poisson jumps, Journal of Applied Nonlinear Dynamics, 8 (2019), 407–417. doi: 10.5890/JAND.2019.09.005
![]() |
[4] | P. Balasubramaniam, S. Saravanakumar, K. Ratnavelu, Study a class of Hilfer fractional stochastic integrodifferential equations with Poisson jumps, Stoch. Anal. Appl.,, 36 (2018), 1021–1036. |
[5] |
A. Chadha, D. N. Pandey, Existence results for an impulsive neutral stochastic fractional integrodifferential equation with infinite delay, Nonlinear Analysis, 128 (2015), 149–175. doi: 10.1016/j.na.2015.07.018
![]() |
[6] | K. Dhanalakshmi, P. Balasubramaniam, Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process, Stoch. Anal. Appl., 38 (2019), 352–372. |
[7] |
E. Hausenblas, SPDEs driven by Poisson random measure with non Lipschitz coefficients:existence results, Probab. Theory Rel., 137 (2006), 161–200. doi: 10.1007/s00440-006-0501-8
![]() |
[8] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science, Vol 204, 2006. |
[9] |
J. Luo, T. Taniguchi, The existence and uniqueness for non-Lipschitz stochastic neutral delay evolution equations driven by Poisson jumps, Stoch. Dyn., 9 (2009), 135–152. doi: 10.1142/S0219493709002592
![]() |
[10] | X. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 1997. |
[11] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, New York: John Wiley, 1993. |
[12] | M. A. Ouahra, B. Boufoussi, E. Lakhel, Existence and stability for stochastic impulsive neutral partial differential equations driven by Rosenblatt process with delay and Poisson jumps, Commun. Stoch. Anal., 11 (2017), 99–117. |
[13] | I. Podlubny, Fractional Differential Equations, London: Academic Press, 1999. |
[14] | G. D. Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, London: Cambridge University Press, 2014. |
[15] |
Y. Ren, R. Sakthivel, Existence, uniqueness and stability of mild solutions for second-order neutral stochastic evolution equations with infinite delay and Poisson jumps, J. Math. Phys., 53 (2012), 073517. doi: 10.1063/1.4739406
![]() |
[16] | F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Disc. Dyn. Nat. Soc., 2017 (2017). |
[17] | P. Tamilalagan, P. Balasubramaniam, Existence results for semilinear fractional stochastic evolution inclusions driven by Poisson jumps, In Mathematical Analysis and Its Applications, Springer, (2014), 477–487. |
[18] | S. Xie, Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay, Fract. Calc. Appl. Anal., 17 (2014), 1158–1174. |
[19] |
S. Zhao, M. Song, Stochastic impulsive fractional differential evolution equations with infinite delay, Filomat, 31 (2017), 4261–4274. doi: 10.2298/FIL1713261Z
![]() |
1. | Hassan Ranjbar, Leila Torkzadeh, Dumitru Baleanu, Kazem Nouri, Simulating systems of Itô SDEs with split-step (\alpha, \beta) -Milstein scheme, 2023, 8, 2473-6988, 2576, 10.3934/math.2023133 |