Processing math: 82%
Research article

Well posedness of second-order impulsive fractional neutral stochastic differential equations

  • Received: 04 March 2021 Accepted: 24 May 2021 Published: 21 June 2021
  • MSC : 34K30, 60H60

  • In this manuscript, we investigate a class of second-order impulsive fractional neutral stochastic differential equations (IFNSDEs) driven by Poisson jumps in Banach space. Firstly, sufficient conditions of the existence and the uniqueness of the mild solution for this type of equations are driven by means of the successive approximation and the Bihari's inequality. Next we get the stability in mean square of the mild solution via continuous dependence on initial value.

    Citation: Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai. Well posedness of second-order impulsive fractional neutral stochastic differential equations[J]. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536

    Related Papers:

    [1] Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780
    [2] Yongxiang Zhu, Min Zhu . Well-posedness and order preservation for neutral type stochastic differential equations of infinite delay with jumps. AIMS Mathematics, 2024, 9(5): 11537-11559. doi: 10.3934/math.2024566
    [3] Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549
    [4] Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
    [5] Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives. AIMS Mathematics, 2024, 9(5): 12375-12398. doi: 10.3934/math.2024605
    [6] Chunli You, Linxin Shu, Xiao-bao Shu . Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403
    [7] A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed . Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290
    [8] Jiali Wu, Maoning Tang, Qingxin Meng . A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon. AIMS Mathematics, 2023, 8(2): 4042-4078. doi: 10.3934/math.2023202
    [9] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [10] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
  • In this manuscript, we investigate a class of second-order impulsive fractional neutral stochastic differential equations (IFNSDEs) driven by Poisson jumps in Banach space. Firstly, sufficient conditions of the existence and the uniqueness of the mild solution for this type of equations are driven by means of the successive approximation and the Bihari's inequality. Next we get the stability in mean square of the mild solution via continuous dependence on initial value.



    In recent years, fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Classical theory and applications of FDEs are presented in the monographs [8,11,13]. Stochastic differential equations (SDEs) are the proper apparatus to model systems with external noise and suffered by uncertain or random facts, for more details on SDEs readers can can refer to [1,2,5,6,10,14]. Very recently, many researchers were devoted to study impulsive fractional integro differential evolution equations Xie [18] investigated as follows,

    Dαt[y(t)g(t,yt)]=Ay(t)+f(t,yt,By(t)), tJ, ttk,Δy(ti)=Ii(yti),  Δy(ti)=Ji(xti), i=1,2,...,m,y0=φB,  y0=y1H,

    where By(t)=t0k(t,s)y(s)ds, kC(D,R+), D={(t,s):0stb}.

    On the other hand, Poisson jumps processes are used in modeling for several real life situations. Moreover, many practical applications are used in the field of market crashes, earthquakes, epidemics, etc, . In dynamical systems, a jump term is included to make the model a realistic one. Many literature have been study SDEs driven by Poisson jumps has [3,4,7,9,12,15,16,17]. However, there is no literature in IFNSDEs, we use of the successive method and Bihari's inequality. This paper is concerned with IFNSDEs driven by Poisson jump,

    Dαt[y(t)g(t,yt)]=Ay(t)+f(t,yt)+σ(t,yt)dw(t)+Uh(t,yt,u)˜N(ds,du),J=t[0,a],Δy(tk)=Ik(ytk),  Δy(tk)=Jk(ytk),k=1,2,...,m,y0=φB,   y0=y1H. (1.1)

    Here, Dαt denotes the Caputo fractional derivative of order 0<α<1; A:D(A)XX denotes sectorial operator. The nonlinear maps f,g:[0,a]×BX, σ:[0,a]×BL(Y,X) and h:[0,a]×B×UX are appropriate mappings. Let B is an abstract phase space. Let yt:(,0]X, yt(s)=y(t+s), s0B. In ˜N(ds,du)=N(ds,du)v(du)ds. the Poisson measure ˜N(dt,du) denotes the Poisson counting measure associated with a characteristic measure λ. Moreover, Δy(tk)=y(t+k)y(tk) for 0t0<t1<<tn<tn+1=a, and y(t+k) and y(tk) denote the right and the left limits of y(t) at t=tk, respectively.

    In this section, we dealt with basic definitions for FC and some of the lemmas that are useful for further derivation, (see [13,19]).

    We introduce the space PC formed by all X-valued stochastic processes {y(t):t[0,a]} such that y is continuous at ttk, y(tk)=y(tk) and y(t+k) exist for all k=1,2,...,m. When PC is endowed with the norm yPC=(sups[0,a]Ey(s)2)1/2, (PC,PC) is a Banach space. Next, we present an axiomatic definition of the phase space B are established for 0-measurable functions from (,0]X, with a semi norm B which satisfies:

    (H1) If y:(,a]X, a>0 is s.t y0B and y|[0,a]PC, then, for every t[0,a], if the following conditions hold:

    (1)ytB

    (2)|y(t)|<KytB,

    (3)ytBM(t)sup0st|y(s)|+N(t)y0B

    where K>0, M,N:[0,+)[1,+) are mappings. M is continuous and N is locally bounded.

    (H2) The space B is complete.

    Lemma 2.1. Let y:(,a]X be an t-adapted measurable process s.t y0=φL2(Ω,B),

    EysBNaEφB+MaE(sup0say(s)), (2.1)

    where Na=supt[0,a]{N(t)} and Ma=supt[0,a]{M(t)}.

    Denoted by M2((,a],X), the space of X-valued cadlag processes y={y(t)}<t<a s.t

    (ⅰ) y0=φB, y(t) is t-adapted on [0,a]

    (ⅱ) If M2((,a],X) with the norm

    y2M2=Eφ2B+E(supt[0,a]y(t)2)<. (2.2)

    Definition 2.2. An X-valued stochastic process y(t),(tJ) is called a mild solution of (1.1), if

    (i) y(t) is measurable and t-adapted for t[0,a],

    (ii) y0=φB.

    (iii) For t[0,a], a.s

    y(t)={Sα(t)φ(0)+t0Sα[y1g(0,φ)]ds+t0Sα(ts)g(s,ys)ds+tk<tSα(ttk)Ik(ytk)+tk<tttkSα(ts)[Jk(ytk)g(tk,ytk+Ik(ytk))]ds+t0Tα(ts)f(s,ys)ds+t0Tα(ts)σ(s,ys)dw(s)+t0UTα(ts)h(s,ys,u)˜N(ds,du), (2.3)

    where Sα(t),Tα(t):R+L(X,X)(ζ=1+α) are given by

    Sα(t)=Eα,1(Atα)=12πiBreλtλα1λαAdλ, (2.4)
    Tα(t)=tα1Eα,α(Atα)=12πiBreλtλαAdλ, (2.5)

    and Br denotes the Bromwich path [18].

    In order to prove our main results, we enforce the following hypotheses,

    (H3)A is the infinitesimal generator of an α-order cosine families Sα(t) and Tα(t) on X and L>0, La1

    Sα(t) LTα(t) tα1La

    (H4)g,f:[0,a]×BX, σ:[0,a]×BL02 and h:[0,a]×BX satisfy

    (1)g(t,y)g(t,z)2f(t,y)f(t,z)2σ(t,y)σ(t,z)2k(yz2B),t[0,a],y,zB,(2)Uh(t,y,u)h(t,z,u)2v(du)ds(Uh(t,y,u)h(t,z,u)4v(du)ds)1/2k(yz2B),t[0,a],y,zB,(3)(Uh(t,y,u)4v(du)ds)1/2k|y|2.

    Here k() is a concave, continuous and nondecreasing function from R+ to R+ s.t k(0)=0, k(u)>0 for u>0 and 0+dsk(s)=.

    (H5)Ik,Jk:BX are continuous and there are positive constants pk,qk>0 such that for each φ,ϕB,

    Ik(φ)Ik(ϕ)2pkφϕ2B,Jk(φ)Jk(ϕ)2qkφϕ2B,(k=1,2,...,m).

    (H6)g(t,0)2f(t,0)2σ(t,0)2Uh(t,o,u)2k0, where k0 is a positive constant, Ik(0)=0, Jk(0)=0, (k=1,2,...,m).

    Now, The successive approximations are considered as follows,

    y0(t)=Sα(t)φ(0)+t0Sα(s)[y1g(0,φ)]ds,t[0,a], (3.1)
    yn(t)=Sα(t)φ(0)+t0Sα(s)[y1g(0,φ)]ds+tk<tSα(ttk)Ik(yn1tk)+tk<tSα(ttk)[Jk(yn1tk)g(tk,yn1tk+Ik(yn1ytk))+g(tk,yn1tk)]ds+t0Sα(ts)g(s,yn1s)ds+t0Tα(ts)f(s,yn1s)ds+t0Tα(ts)σ(s,yn1s)dw(s)+t0UTα(ts)h(s,yn1s,u)˜N(ds,du),tJ, (3.2)
    yn(t)=φ(t),<t0,n1. (3.3)

    Lemma 3.1. Suppose that (H3)(H6) hold, and

    8mL2Matk<tpk+16mL2a2Matk<tqk<1,

    then yn(t)M2((,a];X),t(,a], n0,

    Eyn(t)2˜M,n=1,2,, (3.4)

    here ˜M>0.

    Proof. Let y0(t)M2((,a];X) and

    Eyn(t)28ESα(t)φ(0)2+8Et0Sα(s)[y1g(0,φ)]ds2+8Etk<tSα(ttk)Ik(yn1tk)2+8Etk<tttkSα(ts)[Jk(yn1tk)g(tk,yn1tk+Ik(yn1tk))+g(tk,yn1tk)]ds2+8Et0Sα(ts)g(s,yn1s)ds2+8Et0Tα(ts)f(s,yn1s)ds2+8Et0Tα(ts)σ(s,yn1s)dw(s)2+8Et0Tα(ts)h(s,yn1s,u)˜N(ds,du)2=88i=1Gi.

    It's easy to get the estimations

    G18L2Eφ(0)2.

    Next,

    G224L2a2(y12+k(φ2B)+k0),

    and

    G38mL2tk<tEIk(yn1tk)2B8mL2ts<tpkEyn1tk2B.

    By (H3)(H6) and Sα(t)L(X,X)L, we have

    G416Etk<tSα(ts)Jk(yntk)ds2+16Etk<tSα(ts)[g(tk,yn1tk+Ik(yn1tk))g(tk,yn1tk)]ds216mL2a2tk<tqkEyn1tk2B+16mL2atk<tttkk(Epkyn1tk2B)ds.

    and

    G58Et0Sα(ts)g(s,yn1s)ds216L2aEt0[g(s,yn1s)g(s,0)2+g(s,0)2]ds16L2at0k(Eyn1s2B)ds+16L2a2k0.

    By (H3)(H6), we have

    G68Et0Tα(ts)f(s,yn1s)ds28L2aa2α12α1Et0f(s,yn1s)f(s,0)+f(s,0)2ds16L2aa2α12α1t0k(Eyn1s2B)ds+16L2aa2α2α1k0.

    Next, by (H3)(H6), Holder inequality and B-D-G inequality, we obtain

    G78Et0Tα(ts)σ(s,yn1s)dw(s)28L2aa2α2Et0σ(s,yn1s)σ(s,0)+σ(s,0)2L02ds16L2aa2α2t0k(Eyn1s2B)ds+16L2aa2α1k0.

    Finally,

    G88Et0UTα(ts)h(s,yn1s,u)˜N(ds,du)28L2aa2α2[Et0Uh(s,yn1,u)2v(du)ds+E(t0Uh(s,yn1,u)4v(du)ds)1/2]8L2aa2α2[Et0Uh(s,yn1,u)h(s,0,u)+h(s,0,u)2v(du)ds+E(t0Uh(s,yn1,u)4v(du)ds)1/2]16L2aa2α2t0k(Eyn1s2B)ds+16L2aa2α1k0+8L2aa2α2t0k(Eyn1s2B)ds24L2aa2α2t0k(Eyn1s2B)ds+16L2aa2α1k0.

    Let

    Q1=8L2Eφ(0)2+24L2a2(y12+k(φ2B)+k0)+16L2a2k0+16L2aa2α2α1k0+16L2aa2α1k0.

    From the above estimations, together yields

    Eyn(t)2Q1+8mL2tk<tpkEyn1tk2B+16mL2a2tk<tqkEyn1tk2B+16mL2atk<tttkk(Epkyn1tk2B)ds+(16L2a+16L2aa2α2+16L2aa2α12α1+24L2aa2α2)t0k(Eyn1s2B)ds.

    By using Lemma 2.1 and k(), we have to show that a pair of +ve constants β and λ s.t k(u)β+λu,  u0. Then

    Esup0styn(s)2Q1+8mL2Natk<tpkEφB+16mL2a2tk<tqkEφB+16m2L2a2a+(16L2a+16L2aa2α2+16L2aa2α12α1+24L2aa2α2)bβ+(8mL2Matk<tpk+16mL2a2Matk<tqk)Esup0styn(s)2+(16mL2atk<tpk+16L2a+16L2aa2α2+16L2aa2α12α1+24L2aa2α2)λEt0sup0styn(s)2ds,

    and

    max1n˜k{Esup0styn(s)2}Q1+8mL2Natk<tpkEφB+16mL2a2tk<tqkEφB+16m2L2a2β+(16L2a+16L2aa2α2+16L2aa2α12α1+24L2aa2α2)bβ+(8mL2Matk<tpk+16mL2a2Matk<tqk)max1n˜k{Esup0styn(s)2}+(16mL2atk<tpk+16L2a+16L2aa2α2+16L2aa2α12α1+24L2aa2α2)λt0max1n˜k{Esup0styn(s)2}ds,

    where ˜k>0. Let

    Q2=Q1+8mL2Natk<tpkEφB+16mL2a2tk<tqkEφB18mL2Matk<tpk16mL2a2Matk<tqk+16m2L2a2β+(16L2a+16L2aa2α2+16L2aa2α12α1+24L2aa2α2)18mL2Matk<tpk16mL2a2Matk<tqkQ3=(16mL2atk<tpk+16L2a+16L2aa2α2+16L2aa2α12α1+24L2aa2α2)λ18mL2Matk<tpk16mL2a2Matk<tqk.

    Then

    max1n˜k{Esup0styn(s)2}Q2+Q3t0max1n˜k{Esup0styn(s)2}ds.

    Using Gronwall inequality,

    max1n˜k{Esup0styn(s)2}Q2eQ3.

    Due to the arbitrary of ˜k, we have

    Esup0styn(s)2Q2eQ3=M,0ta,n1.

    Consequently,

    yn(s)2Eφ2B+E(sup0styn(s)2)Eφ2B+M<,

    let ˜M=Eφ2B+M. Hence the proof.

    Theorem 3.2. If (H3)(H6) and

    max{8mL2Matk<tpk+16mL2a2Matk<tqk,8mL2tk<tpk+16mL2atk<tqk}<1 (3.5)

    hold, then the system (1.1) has a unique mild solution of (,a].

    Proof. Let

    Eyn+m(t)yn(t)2=8Etk<tSα(ttk)[Ik(ym+n1tk)Ik(yn1tk)]2+8Etk<tttkSα(ts)[Jk(ym+n1tk)Jk(yn1tk)]2+8Etk<tttkSα(ts)[g(tk,ym+n1tk+Ik(ym+n1tk))g(tk,yn1tk+Ik(yn1tk))]ds2+8Etk<tttkSα(ts)[g(tk,ym+n1tk)g(tk,yn1tk)]ds2+8Et0Sα(ts)[g(tk,ym+n1tk)g(tk,yn1tk)]ds2+8Et0Tα(ts)[f(tk,ym+n1tk)f(tk,yn1tk)]ds2+8Et0Tα(ts)[σ(tk,ym+n1tk)σ(tk,yn1tk)]dw(s)2+8Et0UTα(ts)[h(tk,ym+n1tk,u)h(tk,yn1tk,u)˜N(ds,du)]ds2

    By the fact (H3)(H6), we have

    Eyn+m(t)yn(t)28mL2Etk<tpksup0stym+n1(s)yn1(s)2+8mL2aEtk<tqksup0stym+n1(s)yn1(s)2+8mL2tk<tttkk(pkEsup0stym+n1(s)yn1(s)2)ds+8mL2tk<tttkk(Esup0stym+n1(s)yn1(s)2)ds+8L2attkk(Esup0stym+n1(r)yn1(r)2)ds+8mL2a2α12α1t0k(Esup0stym+n1(r)yn1(r)2)ds+8mL2a2α2t0k(Esup0stym+n1(r)yn1(r)2)ds+32mL2a2α2t0k(Esup0stym+n1(r)yn1(r)2)ds=(8mL2tk<tpk+8mL2atk<tqk)Esup0stym+n1(r)yn1(r)2)ds+8mL2tk<tttkk((1+pk)Esup0stym+n1(r)yn1(r)2)ds)+(8L2a+8mL2a2α12α1+8mL2a2α2+32mL2a2α2)×t0k(Esup0stym+n1(r)yn1(r)2)ds

    Let ˉp=max1kmpk. Since

    ttkk((1+pk)Esup0rtkym+n1(r)yn1(r)2)ds)ttkk((1+pk)Esup0rsym+n1(r)yn1(r)2)ds)ttkk((1+ˉp)Esup0rsym+n1(r)yn1(r)2)ds)

    and ˜kc()=k(c()) is a concave function, we get

    Esup0styn+m(s)yn(s)2(8mL2tk<tpk+8mL2atk<tqk)Esup0stym+n1(r)yn1(r)2)ds+(16L2a+8mL2a2α12α1+8mL2a2α2+32mL2a2α2)t0˜k(Esup0stym+n1(r)yn1(r)2)ds. (3.6)

    Hence,

    Esup0styn+m(s)yn(s)2(8mL2tk<tpk+8mL2atk<tqk)Esup0stym+n1(r)yn1(r)2)ds(16L2a+8mL2a2α12α1+8mL2a2α2+32mL2a2α2)t0˜k(Esup0stym+n1(r)yn1(r)2)ds

    Using Lemma 3.1, we get

    Esup0styn+m(s)yn(s)2(8mL2tk<tpk+8mL2atk<tqk)Esup0stym+n1(r)yn1(r)2)ds(16L2a+8mL2a2α12α1+8mL2a2α2+32mL2a2α2)t0˜k(2M)dsQ4˜k(2M)t=Q5t.

    Define

    φ1(t)=Q5t,φn+1(t)=Q4t0˜k(φn(s))ds,n1.

    Choose a1[0,a) such that Q4˜k(Q5t)Q5, 0ta1.

    For any t[0,a1), {φn(t)} is a decreasing sequence. In fact

    φ2(t)=Q4t0˜k(φ1(s))ds=Q4t0˜k(Q5(s))dst0Q5ds=φ1(t).

    By induction, we get

    φn+1(t)=Q4t0˜k(φn(s))dsQ4t0˜k(Qn1(s))ds=φn(t), 0ta1. (3.7)

    Therefore, the statement is true and we can define the function ϕ(t) as

    ϕ(t)=limnφn(t)=limnQ4t0˜k(φn1(s))ds=limnQ4t0˜k(ϕ(s))ds,0ta1.

    By the Bihari's inequality, we have ϕ(t)=0 0ta1. It means that for all 0ta1,

    limn[Esup0styn+m(s)yn(s)2(8mL2tk<tpk+8mL2atk<tqk)Esup0stym+n1(r)yn1(r)2]=0. (3.8)

    By using the condition 8mL2tk<tpk+8mL2atk<tqk<1 and (3.8), we obtain

    limnEyn+m(s)yn(s)2=0,0ta1, (3.9)

    this implies that {yn(t)} is a Cauchy sequence in L2(Ω,X). Let limnyn(t)=y(t), obviously,

    y(t)2˜M,0ta1. (3.10)

    Taking limits on both side of equation (3.2), t[0,a1], we have

    y(t)={Sα(t)φ(0)+t0Sα[y1g(0,φ)]ds+t0Sα(ts)g(s,ys)ds+tk<tSα(ttk)Ik(ytk)+tk<tttkSα(ts)[Jk(ytk)g(tk,ytk+Ik(ytk))]ds+t0Tα(ts)f(s,ys)ds+t0Tα(ts)σ(s,ys)dw(s)+t0UTα(ts)h(s,ys,u)˜N(ds,du), (3.11)

    so we have presented the existence of the mild solution of (1.1) on [0, a_{1}] . By iteration we can get the existence of the mild solution of (1.1) on [0, a] .

    Suppose that \mathrm{y}_{1}, \mathrm{y}_{2} are two solutions of (1.1). Using the similar discussion as (3.8), we get

    \begin{align} &\left[1-(8m\mathrm{L}^{2}\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{k}})\right]\mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}_{1}- \mathrm{y}_{2}\right\|^{2})d\mathrm{s}\\ &\leq\big(16\mathrm{L}^{2}a+8m\mathrm{L}^{2}\frac{a^{2\alpha-1}}{2\alpha-1}+8m\mathrm{L}^{2}a^{2\alpha-2} +32m\mathrm{L}^{2}a^{2\alpha-2}\big)\int^{\mathrm{t}}_{0}\tilde{\mathrm{k}}(\mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}_{1}- \mathrm{y}_{2}\right\|^{2})d\mathrm{s} \end{align} (3.12)

    the Bihari's inequality implies \mathbb{E}\left\|\mathrm{y}_{1}- \mathrm{y}_{2}\right\|^{2} = 0 , and we have shown the existence and the uniqueness of the mild solution of (1.1).

    In this section, we have given the continuous dependence of solutions on the initial values by means of the Bihari's inequality. We first propose the following assumption on \mathfrak{g} instead of ({\bf{H4}}) ,

    ({\bf{H7}}) \; \mathfrak{g}:[0, a]\times \mathscr{B}\rightarrow \mathfrak{X} satisfy

    \begin{eqnarray*} \left\|\mathfrak{g}(\mathrm{t},\varphi)-\mathfrak{g}(\mathrm{t},\phi)\right\|^{2}\leq \mathrm{k}_{1}\left\|\varphi-\phi\right\|^{2}_{\mathcal{B}},\; \; \mathrm{k}_{1} > 0. \end{eqnarray*}

    Definition 4.1. A mild solution \mathrm{y}^{\varphi, \mathrm{y}_{1}}(\mathrm{t}) of Cauchy problem (1.1) with initial value (\varphi, \mathrm{y}_{1}) is known as stable in square if \forall \ \epsilon > 0, \ \ni \; \delta > 0 s.t

    \begin{eqnarray} \mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq a}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{z}_{1}}(\mathrm{s})\right\|\leq \epsilon, \; \; \; \mathbb{E}\left\|\varphi-\phi\right\|^{2}_{\mathcal{B}}+\mathbb{E}\left\|\mathrm{y}_{1}-\mathrm{z}_{1}\right\|^{2} < \delta, \end{eqnarray} (4.1)

    where \mathrm{z}^{\varphi, \mathrm{z}_{1}}(\mathrm{t}) is further solution of (1.1) with initial condition (\varphi, \mathrm{z}_{1}) .

    Theorem 4.2. Assume 3(8m\mathrm{L}^{2}\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{s}}) < 1 , by Theorem 3.2 and ({\bf{H7}}) , are satisfied, then the mild solution of (1.1) is stable.

    Proof. Using similar argument of Theorem 3.2, we get \forall 0\leq t \leq a ,

    \begin{eqnarray*} \mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{z}_{1}}(\mathrm{s})\right\|^{2}&\leq&3\mathbb{E}\left\|\mathrm{S}_{\alpha}(\mathrm{t})\varphi(0)-\mathrm{S}_{\alpha}(\mathrm{t})\phi(0)\right\|^{2}+3\mathbb{E}\left\|\int^{\mathrm{t}}_{0}\mathrm{S}_{\alpha}(s)(\left\|\mathrm{y}_{1}-\mathrm{z}_{1}\right\|_{\mathfrak{X}}+\left\|\varphi-\phi\right\|_{\mathcal{B}})d\mathrm{s}\right\|^{2}\\ &+&3(8m\mathrm{L}^{2}\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum\limits_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{k}})\mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{z}_{1}}(\mathrm{s})\right\|^{2}\\ &+&\big(16\mathrm{L}^{2}a+16m^{2}\mathrm{L}^{2}+16m\mathrm{L}^{2}+8m\mathrm{L}\frac{a^{2\alpha-1}}{2\alpha-1}+8m\mathrm{L}^{2}a^{2\alpha-2}\\ &+&32m\mathrm{L}^{2}a^{2\alpha-2}\big)\int^{\mathrm{t}}_{0}\tilde{k}(\mathbb{E}\sup\limits_{0\leq r \leq s}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})\right\|^{2})d\mathrm{s} \end{eqnarray*}

    Then we get

    \begin{eqnarray*} \mathbb{E}\sup\limits_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})\right\|^{2}&\leq&\frac{v}{\mathcal{G}}(\left\|\mathrm{y}_{1}-\mathrm{z}_{1}\right\|^{2}+\left\|\varphi-\phi\right\|_{\mathcal{B}})+\frac{\tilde{v}}{\mathcal{G}}\int^{\mathrm{t}}_{0}\tilde{\mathrm{k}}(\mathbb{E}\sup\limits_{0\leq r \leq \mathrm{s}}\left\|\mathrm{y}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi,\mathrm{y}_{1}}(\mathrm{s})\right\|^{2})d\mathrm{s} \end{eqnarray*}

    where v = \max\left\{6\mathrm{L}^{2}, 6\mathrm{L}^{2}a^{2}k_{1}+3\mathrm{L}^{2}\right\} , \tilde{v} = 3\big(16\mathrm{L}^{2}a+16m^{2}\mathrm{L}^{2}+16m\mathrm{L}^{2}+8m\mathrm{L}\frac{a^{2\alpha-1}}{2\alpha-1}+8m\mathrm{L}^{2}a^{2\alpha-2}+32m\mathrm{L}^{2}a^{2\alpha-2}\big) , and \mathcal{G} = 1-3(8m\mathrm{L}^{2}\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}p_{\mathrm{k}}+8m\mathrm{L}^{2}a\sum_{\mathrm{t}_{\mathrm{k}} < \mathrm{t}}q_{\mathrm{k}}) . The function \tilde{\mathrm{k}}(u) is defined in (3.6) which has the Lemma 2.4 in [19]. For \epsilon > 0 , letting \epsilon_{1} = \frac{1}{2}\epsilon , we have \lim_{s\rightarrow 0}\int^{\epsilon_{1}}_{s}\frac{1}{\tilde{\mathrm{k}}(u)}du = \infty . \exists \; \delta and \delta < \epsilon_{1} such that \int^{\epsilon_{1}}_{\mathrm{s}}\frac{1}{\tilde{\mathrm{k}}(u)}du\geq \mathfrak{T} . Let u_{0} = \frac{v}{\Lambda}(\left\|\mathrm{y}_{1}-\mathrm{y}_{1}\right\|^{2}+\left\|\varphi-\phi\right\|_{\mathcal{B}}) , u(\mathrm{t}) = \mathbb{E}\sup_{0\leq \mathrm{s} \leq \mathrm{t}}\left\|\mathrm{y}^{\varphi, \mathrm{y}_{1}}(\mathrm{s})-\mathrm{z}^{\varphi, \mathrm{y}_{1}}(\mathrm{s})\right\| , v(\mathrm{t}) = 1 . If u_{0}\leq \delta \leq \epsilon_{1} , the Lemma 2.5 in [19], shows that \int^{\epsilon_{1}}_{u_{0}}\frac{1}{\tilde{\mathrm{k}}(u)}du\geq \int^{\epsilon_{1}}_{\delta}\frac{1}{\tilde{\mathrm{k}}(u)}du\geq \mathfrak{T} = \int^{a}_{0}v(\mathrm{s})d\mathrm{s} . So for any \mathrm{t}\in [0, a] , the estimate u(\mathrm{t})\leq \epsilon_{1}\leq \epsilon holds. Hence the proof.

    In this manuscript, we investigate a class of second-order impulsive fractional neutral stochastic differential equations (IFNSDEs) driven by Poisson jumps in Banach space. Firstly, sufficient conditions of the existence and the uniqueness of the mild solution for this type of equations are drived by means of the successive approximation and the Bihari's inequality. Next we get the stability in mean square of the mild solution via continuous dependence on initial value are established.

    The authors thank the referees for useful comments and suggestion which led to an improvement in the quality of this article.

    All authors declare no conflicts of interest in this paper.



    [1] A. Anguraj, K. Ramkumar, E. M. Elsayed, Existence, uniqueness and stability of impulsive stochastic partial neutral functional differential equations with infinite delays driven by a fractional Brownian motion, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 327–337. doi: 10.5890/DNC.2020.06.012
    [2] A. Anguraj, K. Ravikumar, Existence and stability results of impulsive stochastic partial neutral functional differential equations with infinite delays and Poisson jumps, Journal of Applied Nonlinear Dynamics, 9 (2020), 245–255.
    [3] A. Anguraj, K. Ravikumar, Existence and stability results for impulsive stochastic functional integrodifferential equations with Poisson jumps, Journal of Applied Nonlinear Dynamics, 8 (2019), 407–417. doi: 10.5890/JAND.2019.09.005
    [4] P. Balasubramaniam, S. Saravanakumar, K. Ratnavelu, Study a class of Hilfer fractional stochastic integrodifferential equations with Poisson jumps, Stoch. Anal. Appl.,, 36 (2018), 1021–1036.
    [5] A. Chadha, D. N. Pandey, Existence results for an impulsive neutral stochastic fractional integrodifferential equation with infinite delay, Nonlinear Analysis, 128 (2015), 149–175. doi: 10.1016/j.na.2015.07.018
    [6] K. Dhanalakshmi, P. Balasubramaniam, Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process, Stoch. Anal. Appl., 38 (2019), 352–372.
    [7] E. Hausenblas, SPDEs driven by Poisson random measure with non Lipschitz coefficients:existence results, Probab. Theory Rel., 137 (2006), 161–200. doi: 10.1007/s00440-006-0501-8
    [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science, Vol 204, 2006.
    [9] J. Luo, T. Taniguchi, The existence and uniqueness for non-Lipschitz stochastic neutral delay evolution equations driven by Poisson jumps, Stoch. Dyn., 9 (2009), 135–152. doi: 10.1142/S0219493709002592
    [10] X. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 1997.
    [11] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, New York: John Wiley, 1993.
    [12] M. A. Ouahra, B. Boufoussi, E. Lakhel, Existence and stability for stochastic impulsive neutral partial differential equations driven by Rosenblatt process with delay and Poisson jumps, Commun. Stoch. Anal., 11 (2017), 99–117.
    [13] I. Podlubny, Fractional Differential Equations, London: Academic Press, 1999.
    [14] G. D. Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, London: Cambridge University Press, 2014.
    [15] Y. Ren, R. Sakthivel, Existence, uniqueness and stability of mild solutions for second-order neutral stochastic evolution equations with infinite delay and Poisson jumps, J. Math. Phys., 53 (2012), 073517. doi: 10.1063/1.4739406
    [16] F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Disc. Dyn. Nat. Soc., 2017 (2017).
    [17] P. Tamilalagan, P. Balasubramaniam, Existence results for semilinear fractional stochastic evolution inclusions driven by Poisson jumps, In Mathematical Analysis and Its Applications, Springer, (2014), 477–487.
    [18] S. Xie, Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay, Fract. Calc. Appl. Anal., 17 (2014), 1158–1174.
    [19] S. Zhao, M. Song, Stochastic impulsive fractional differential evolution equations with infinite delay, Filomat, 31 (2017), 4261–4274. doi: 10.2298/FIL1713261Z
  • This article has been cited by:

    1. Hassan Ranjbar, Leila Torkzadeh, Dumitru Baleanu, Kazem Nouri, Simulating systems of Itô SDEs with split-step (\alpha, \beta) -Milstein scheme, 2023, 8, 2473-6988, 2576, 10.3934/math.2023133
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2468) PDF downloads(126) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog