Research article Special Issues

Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition

  • Received: 03 February 2021 Accepted: 06 May 2021 Published: 10 May 2021
  • MSC : 35B30, 35B40, 35J60

  • This manuscript deals with the existence and uniqueness for the fourth order of Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition by using Galerkin's method.

    Citation: Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Mohamed Abdalla, Ibrahim Mekawy. Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition[J]. AIMS Mathematics, 2021, 6(7): 7585-7624. doi: 10.3934/math.2021442

    Related Papers:

  • This manuscript deals with the existence and uniqueness for the fourth order of Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition by using Galerkin's method.



    加载中


    [1] S. Adhikari, Structural dynamic analysis with generalized damping models: analysis, Wiley-ISTE, 2013.
    [2] R. P. Agarwal, A. M. A. Alghamdi, S. Gala, M. A. Ragusa, On the continuation principle of local smooth solution for the Hall-MHD equations, Appl. Anal., 2020, DOI: 10.1080/00036811.2020.1753711. doi: 10.1080/00036811.2020.1753711
    [3] R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space, Z. Angew. Math. Phys., 71 (2020), 95. doi: 10.1007/s00033-020-01318-4
    [4] R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion in weak spaces to Boussinesq equations, Mathematics, 8 (2020), 920. doi: 10.3390/math8060920
    [5] F. Alabau-Boussouira, P. Cannarsa, D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal., 254 (2008), 1342-1372. doi: 10.1016/j.jfa.2007.09.012
    [6] A. Barbagallo, S. Gala, M. A. Ragusa, M. Thera, On the regularity of weak solutions of the Boussinesq equations in Besov spaces, Vietnam J. Math., 2020, https://doi.org/10.1007/s10013-020-00420-4.
    [7] S. Boulaaras, Solvability of the Moore-Gibson-Thompson equation with viscoelastic memory term and integral condition via Galerkin method, Fractals, 29 (2021), 2140021.
    [8] S. Boulaaras, Some new properties of asynchronous algorithms of theta scheme combined with finite elements methods for an evolutionary implicit 2-sided obstacle problem, Math. Meth. Appl. Sci., 40 (2017), 7231-7239. doi: 10.1002/mma.4525
    [9] S. Boulaaras, Y. Bouizem, Blow up of solutions for a nonlinear viscoelastic system with general source term, Quaest. Math., DOI: 10.2989/16073606.2020.1851308.
    [10] S. Boulaaras, A. Choucha, D. Ouchenane, Exponential decay of solutions for a viscoelastic coupled Lame system with logarithmic source and distributed delay terms, Math. Meth. Appl. Sci., 44 (2021), 4858-4880. doi: 10.1002/mma.7073
    [11] S. Boulaaras, A. Choucha, B. Cherif, A. Alharbi, M. Abdalla, Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions, AIMS Mathematics, 6 (2021), 4664-4676. doi: 10.3934/math.2021274
    [12] S. Boulaaras, A. Choucha, A. Zara, M. Abdalla, B. Cherif, Global existence and decay estimates of energy of solutions for a new class of $p$-Laplacian heat equations with logarithmic nonlinearity, J. Funct. Space., 2021 (2021), 5558818.
    [13] S. Boulaaras, N. Doudi, Global existence and exponential stability of coupled Lamé system with distributed delay and source term without memory term, Bound. Value Probl., 2020 (2020), 173. doi: 10.1186/s13661-020-01471-9
    [14] S. Boulaaras, M. Haiour, L-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem, Appl. Math. Comput., 217 (2011), 6443-6450.
    [15] S. Boulaaras, M. Haiour, A new proof for the existence and uniqueness of the discrete evolutionary HJB equations, Appl. Math. Comput., 262 (2015), 42-55.
    [16] S. Boulaaras, N. Mezouar, Global existence and decay of solutions of a singular nonlocal viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized damping term, Math. Meth. Appl. Sci., 43 (2020), 6140-6164. doi: 10.1002/mma.6361
    [17] S. Boulaaras, A. Zarai, A. Dhraifia, Galerkin method for nonlocal mixed boundary value problem for the Moore-Gibson-Thompson equation with integral condition, Math. Meth. Appl. Sci., 42 (2019), 2664-2679. doi: 10.1002/mma.5540
    [18] H. Bulut, T. A. Sulaiman, H. M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 172 (2018), 20-27. doi: 10.1016/j.ijleo.2018.06.108
    [19] W. H. Chen, A. Palmieri, A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case, Evol. Equ. Control Theory, 2020, doi: 10.3934/eect.2020085.
    [20] Y. S. Choi, K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal., 18 (1992), 317-331. doi: 10.1016/0362-546X(92)90148-8
    [21] A. Choucha, S. Boulaaras, D. Ouchenane, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Math. Meth. Appl. Sci., 2021, https://doi.org/10.1002/mma.7121.
    [22] A. Choucha, S. Boulaaras, D. Ouchenane, S. Alkhalaf, I. Mekawy, M. Abdalla, On the system of coupled nondegenerate Kirchhoff equations with distributed delay: global existence and exponential decay, J. Funct. Space., 2021 (2021), 5577277.
    [23] A. Choucha, S. Boulaaras, D. Ouchenane, A. Allahem, Global existence for two singular one-dimensional nonlinear viscoelastic equations with respect to distributed delay term, J. Funct. Space., 2021 (2021), 6683465.
    [24] F. Dell'Oro, V. Pata, On a fourth-order equation of Moore-Gibson-Thompson type, Milan J. Math., 77 (2010), 127-150.
    [25] N. Doudi, S. Boulaaras, Global existence combined with general decay of solutions for coupled Kirchhoff system with a distributed delay term, RACSAM, 114 (2020), 204. doi: 10.1007/s13398-020-00938-9
    [26] K. Hosseini, M. Mirzazadeh, F. Rabieic, H. M. Baskonus, G. Yel, Dark optical solitons to the Biswas-Arshed equation with high order dispersions and absence of the self-phase modulation, Optik, 209 (2020), 164576. doi: 10.1016/j.ijleo.2020.164576
    [27] B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the MooreGibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), 971-988.
    [28] V. P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust., 16 (1971), 467-470.
    [29] I. Lasiecka, X. Wang, Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy, Z. Angew. Math. Phys., 67 (2016), 17. doi: 10.1007/s00033-015-0597-8
    [30] A. Merah, F. Mesloub, S. Boulaaras, B. Cherif, A new result for a blow-up of solutions to a logarithmic flexible structure with second sound, Adv. Math. Phys., 2021 (2021), 5555930.
    [31] S. Mesloub, A nonlinear nonlocal mixed problem for a second order parabolic equation, J. Math. Anal. Appl., 316 (2006), 189-209. doi: 10.1016/j.jmaa.2005.04.072
    [32] S. Mesloub, On a singular two dimensional nonlinear evolution equation with non local conditions, Nonlinear Anal., 68 (2008), 2594-2607. doi: 10.1016/j.na.2007.02.006
    [33] S. Mesloub, A. Bouziani, On a class of singular hyperbolic equation with a weighted integral condition, Int. J. Math. Math. Sci., 22 (1999), 511-519. doi: 10.1155/S0161171299225112
    [34] S. Mesloub, A. Bouziani, Mixed problem with a weighted integral condition for a parabolic equation with Bessel operator, J. Appl. Math. Stoch. Anal., 15 (2002), 291-300.
    [35] S. Mesloub, N. Lekrine, On a nonlocal hyperbolic mixed problem, Acta Sci. Math., 70 (2004), 65-75.
    [36] S. Mesloub, F. Mesloub, On the higher dimension Boussinesq equation with nonclassical condition, Math. Method. Appl. Sci., 34 (2011), 578-586. doi: 10.1002/mma.1381
    [37] S. Mesloub, S. A. Messaoudi, Global existence, decay, and blow up of solutions of a singular nonlocal viscoelastic problem, Acta Appl. Math., 110 (2010), 705-724. doi: 10.1007/s10440-009-9469-6
    [38] N. Mezouar, S. Boulaaras, Global existence and exponential decay of solutions for generalized coupled non-degenerate Kirchhoff system with a time varying delay term, Bound. Value Probl., 2020 (2020), 90. doi: 10.1186/s13661-020-01390-9
    [39] N. Mezouar, S. Boulaaras, Global existence and decay of solutions of a singular nonlocal viscoelastic system with damping terms, Topol. Method. Nonl. Anal., 56 (2020), 283-312.
    [40] F. Moore, W. Gibson, Propagation of weak disturbances in a gas subject to relaxing effects, J. Aerospace Sci., 27 (1960), 117-127. doi: 10.2514/8.8418
    [41] L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electron. J. Differ. Equ., 45 (1999), 1-6.
    [42] L. S. Pulkina, On solvability in l2 of nonlocal problem with integral conditions for a hyperbolic equation, Differ Uravn., 36 (2000), 316-318.
    [43] R. Racke, B. Said-Houari, Global well-posedness of the Cauchy problem for the Jordan-Moore-Gibson Thompson equation, Konstanzer Schriften in Mathematik, 382 (2019). Available from: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-8ztzhsco3jj82.
    [44] S. Rashid, S. Parveen, H. Ahmad, Y. M. Chu, New quantum integral inequalities for some new classes of generalized convex functions and their scope in physical systems, Open Phys., 19 (2021), https://doi.org/10.1515/phys-2021-0001.
    [45] S. Rashid, S. I. Butt, S. Kanwal, H. Ahmad, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized $\psi$-convex functions with applications, J. Funct. Space., 2021 (2021), 6631474.
    [46] P. Shi, M. Shillor, On design of contact patterns in one dimensional thermoelasticity, In: Theoretical aspects of industrial design, Philadelphia: SIAM, 1992.
    [47] P. Shi, Weak solution to an evolution problem with a non local constraint, SIAM J. Math. Anal., 24 (1993), 46-58. doi: 10.1137/0524004
    [48] P. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound, Philosophical Magazine Series, 4 (1851), 3015-3317.
    [49] S. Toualbia, A. Zaraï, S. Boulaaras, Decay estimate and non-extinction of solutions of $p$-Laplacian nonlocal heat equations, AIMS Mathematics, 5 (2020), 1663-1679. doi: 10.3934/math.2020112
    [50] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Mathematics, 6 (2021), 4507-4525. doi: 10.3934/math.2021267
    [51] Q. Zhou, M. Ekici, A. Sonmezoglu, M. Mirzazadeh, Optical solitons with Biswas-Milovic equation by extended G'/G-expansion method, Optik, 127 (2016), 6277-6290. doi: 10.1016/j.ijleo.2016.04.119
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2317) PDF downloads(155) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog