In this article, we develop a new class of trapezium-type inequalities up to twice differentiable $ h $-convex mappings for fractional integrals of Riemann-type. We conclude numerous existing results in literature from our general inequalities. Based on our consequences, we will obtain some quadrature formulas as applications.
Citation: Muhammad Samraiz, Fakhra Nawaz, Bahaaeldin Abdalla, Thabet Abdeljawad, Gauhar Rahman, Sajid Iqbal. Estimates of trapezium-type inequalities for $ h $-convex functions with applications to quadrature formulae[J]. AIMS Mathematics, 2021, 6(7): 7625-7648. doi: 10.3934/math.2021443
In this article, we develop a new class of trapezium-type inequalities up to twice differentiable $ h $-convex mappings for fractional integrals of Riemann-type. We conclude numerous existing results in literature from our general inequalities. Based on our consequences, we will obtain some quadrature formulas as applications.
[1] | J. Liao, S. Wu, T. Du, The Sugeno integral with respect to $\alpha$-preinvex functions, Fuzzy Set. Syst., 379 (2020), 102-114. doi: 10.1016/j.fss.2018.11.008 |
[2] | S. Wu, M. U. Awan, Estimates of upper bound for a function associated with Riemann-Liouville fractional integral via $h$-convex functions, J. Funct. Space., 2019 (2019), 1-7. |
[3] | İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237-244. |
[4] | S. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mt. J. Math., 39 (2009), 1741-1749. |
[5] | Y. Bai, S. Wu, Y. Wu, Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated $(s, m)$-$P$-convex, J. Funct. Space., 2018 (2018), 1693075. |
[6] | S. Wu, I. A. Baloch, İ. İşcan, On Harmonically $(p, h, m)$-preinvex functions, J. Funct. Space., 2017 (2017), 2148529. |
[7] | G. Toader, Some generalizations of the convexity, Univ. Cluj-Napoca, Cluj-Napoca, (1985), 329-338. |
[8] | C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, CMC Books in Mathematics, New York, USA, 2004. |
[9] | S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. |
[10] | J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical application, Acadmic Press, New York, USA, 1992. |
[11] | I. Koca, P. Yaprakdal, A new approach for nuclear family model with fractional order Caputo derivative, Appl. Math. Nonlinear Sci., 5 (2020), 393-404. doi: 10.2478/amns.2020.1.00037 |
[12] | S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized k-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593-602. doi: 10.2478/amns.2020.2.00064 |
[13] | M. E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard-type via $m$-convexity, Appl. Math. Lett., 23 (2010), 1065-1070. doi: 10.1016/j.aml.2010.04.037 |
[14] | X. Wu, J. Wang, J. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Mathematics, 7 (2019), 845. doi: 10.3390/math7090845 |
[15] | S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications, Mathematics, 7 (2019), 807. doi: 10.3390/math7090807 |
[16] | E. Set, M. E. Özdemir, S. S. Dragomir, On the Hadamard-type inequalities involving several kinds of convexity, J. Inequal. Appl., 2010 (2010), 286845. doi: 10.1155/2010/286845 |
[17] | E. Set, M. E. Özdemir, S. S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., 2010 (2010), 148102. doi: 10.1155/2010/148102 |
[18] | M. Z. Sarikaya, Y. Hüseyin, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049-1059. doi: 10.18514/MMN.2017.1197 |
[19] | Y. Zhang, J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl., 2013 (2013), 220. doi: 10.1186/1029-242X-2013-220 |
[20] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 86. |
[21] | M. Z. Sarikaya, N. Aktan, On the generalizations of some integral inequalitirs and their applications, Math. Comput. Model., 54 (2011), 2175-2182. doi: 10.1016/j.mcm.2011.05.026 |
[22] | M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via $(\alpha, m)$-convexity, Comput. Math. Appl., 61 (2011), 2614-2620. doi: 10.1016/j.camwa.2011.02.053 |
[23] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048 |
[24] | Y. Liao, J. Deng, J. Wang, Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: For twice differentiable geometric-arithmetically s-convex functions, J. Inequal. Appl., 2013 (2013), 1-13. doi: 10.1186/1029-242X-2013-1 |
[25] | S. Wu, S. Iqbal, M. Aamir, M. Samraiz, A. Younus, On some Hermite-Hadamard inequalities involving $k$-fractional calculus, J. Inequal. Appl., 2021 (2021), 32. doi: 10.1186/s13660-020-02527-1 |
[26] | S. Iqbal, M. Aamir, M. Samraiz, Fractional Hermite-Hadamard inequalities for twice differenciable geometric-arithmetically $s$-convex functions, J. Math. Anal., 11 (2020), 13-31. |
[27] | M. Tunc, On new inequalities for h-convex functions via Riemann Liouville fractional integration, Filomat, 27 (2013), 559-565. doi: 10.2298/FIL1304559T |
[28] | S. S. Dragomir, J. E. Pečaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341. |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, New York, London, 2006. |
[30] | J. Wang, X. Li, M. Fečkan, Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (2012), 2241-2253. |
[31] | J. Deng, J. Wang, Fractional Hermite-Hadamard inequalities for $(\alpha, m)$-logrithmically convex functions, J. Inequali. Appl., 2013 (2013), 364. doi: 10.1186/1029-242X-2013-364 |
[32] | S. Mubeen, G. M. Habibullah, $k$-Fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2016), 89-94. |