Research article

Coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function

  • Received: 17 September 2019 Accepted: 02 February 2020 Published: 10 March 2020
  • MSC : 30C45, 33C10, 30C20, 30C50, 30C75

  • Pseudo is a force applied on a function to show the positive or negative effect of it on a class of function defined. The paper aims to investigate the coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function. The early few coefficient bounds were obtained and relevant connection to Fekete-Szegö inequalities have also been derived. The results are new and several other results can be deduced easily from the main findings.

    Citation: S. O. Olatunji, Hemen Dutta. Coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function[J]. AIMS Mathematics, 2020, 5(3): 2526-2538. doi: 10.3934/math.2020166

    Related Papers:

  • Pseudo is a force applied on a function to show the positive or negative effect of it on a class of function defined. The paper aims to investigate the coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function. The early few coefficient bounds were obtained and relevant connection to Fekete-Szegö inequalities have also been derived. The results are new and several other results can be deduced easily from the main findings.


    加载中


    [1] A. W. Goodman, Univalent Functions, vol. 1, Tempa: Mariner Publishing Company, 1983.
    [2] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92. doi: 10.4064/ap-56-1-87-92
    [3] W. Ma, D. Minda, A unified treatment of some special classes of univalent factors, In: Proceedings of the Conference on Complex Analysis, Tianjin, China, 19-23 June, 1992, Conference on Proceedings Lecture Notes for Analysis, Cambridge: International Press, 1994, 157-169.
    [4] D. Coman, The radius of starlikeness for the error function, Stud. Univ. Babes-Bolyai. Math., 36 (1991), 13-16.
    [5] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Compt. Appl. Math., 105 (1999), 327-336. doi: 10.1016/S0377-0427(99)00018-7
    [6] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pure Appl., 45 (2000), 647-657.
    [7] S. N. Malik, Some topics in Geometric functions theory, Saarbrücken: LAP LAMBERT Academic Publishing, 2017.
    [8] S. N. Malik, M. Raza, M. Arif, et al., Coeffifficient estiates of some subclasses of analytic functions related with conic domains, Anal. Univ. Ovidius Const. Ser. Mat., 21 (2013), 181-188.
    [9] K. I. Noor, S. N. Malik, On Coefficient inequalities of functions associated with conic domains, Compt. Math. Appl., 62 (2011), 2209-2217. doi: 10.1016/j.camwa.2011.07.006
    [10] A. Ronning, Uniformly convex functions and corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196. doi: 10.1090/S0002-9939-1993-1128729-7
    [11] S. Kanas, An unified approach to Fekete-Szegö problem, Appl. Math. Compt., 218 (2012), 8453-8461. doi: 10.1016/j.amc.2012.01.070
    [12] B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl., 2014 (2014), 1-16. doi: 10.1186/1029-242X-2014-1
    [13] N. Magesh, V. K. Balaji, C. Abirami, Certain classes of Bi-univalent functions related to shell-like curves connected with Fibonancci numbers, arXiv: 1810: 06216v1 [math CV] 15 Oct, 2018.
    [14] F. Yousef, R. A. Frasin, T. A. Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, arXiv: 1801.095331v2 [math CV] 22 Oct, 2018.
    [15] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, New York: Dover Publications Inc., 1965.
    [16] H. Alzer, Error function inequalities, Adv. Comput. Math., 33 (2010), 349-379. doi: 10.1007/s10444-009-9139-2
    [17] A. Elbert, A. Laforgia, The zeros of the complimentary error function, Numer. Algorithms, 49 (2008), 153-157. doi: 10.1007/s11075-008-9186-7
    [18] S. Kanas, L. Vanitha, C. Ramanchandran, Certain results on q-starlike and q-convex error functions, Math. Slovaca., 68 (2018), 361-368. doi: 10.1515/ms-2017-0107
    [19] C. Ramanchandran, K. Dhanalakshmi, L. Vanitha, Hankel Determinant for a subclass of analytic functions associated nth error functions bounded by conical regions, Int. J. Math. Anal., 11 (2017), 571-581. doi: 10.12988/ijma.2017.7468
    [20] L. Wang, Y. Zhao, Unscented transformation with scaled symmetric sampling strategy for precision estimation of total least squares, Stud. Geophys. Geod., 61 (2017), 385-411. doi: 10.1007/s11200-016-1113-0
    [21] L. Wang, Y. Zhao, Scaled unscented transformation for nonlinear error propagation: Accuracy, sensitivity and applications, J. Surv. Eng., 144 (2018), 04017022.
    [22] L. Wang, Y. Zhao, Second order approximating function method for precision estimation of total least squares, J. Surv. Eng., 145 (2019), 04018011.
    [23] L. Wang, C. Zou, Accuracy analysis and applications of the Sterling interpolation method for nonlinear function error propagation, Measurement, 146 (2019), 55-64. doi: 10.1016/j.measurement.2019.06.017
    [24] K. O. Babalola, On λ-pseudo starlike function, J. Class. Anal., 3 (2013), 137-147.
    [25] S. O. Olatunji, Sigmoid function in the space of univalent λ - pseudo starlike functions with Sakaguchi type functions, J. Progressive Res. Math., 7 (2016), 1164-1172.
    [26] S. Altinkaya, Y. S. Özkan, On Salagean type pseudo-starlike functions, Acta Comment. Univ. Tartu. Math., 21 (2017), 275-285.
    [27] G. Murugusundaramoorthy, T. Janani, Sigmoid function in the space of univalent λ-pseudo starlike functions, Int. J Pure Appl. Math., 101 (2015), 33-41.
    [28] G. Murugusundaramoorthy, T. Janani, K. Vijaya, New subclass of pseudo-meromorphic bi-univalent functions of complex order, arXiv: 1709.00337v1 [math CV]31 Aug, 2017.
    [29] S. N. Malik, S. Mahmood, M. Raza, et al., Coefficient inequalities of functions associated with petal type domain, Mathematics, 6 (2018), 1-11.
    [30] S. Kanas, Coefficient estimates in subclasses of the Caratheodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005), 149-161.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2973) PDF downloads(340) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog