Citation: S. O. Olatunji, Hemen Dutta. Coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function[J]. AIMS Mathematics, 2020, 5(3): 2526-2538. doi: 10.3934/math.2020166
[1] | A. W. Goodman, Univalent Functions, vol. 1, Tempa: Mariner Publishing Company, 1983. |
[2] | A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92. doi: 10.4064/ap-56-1-87-92 |
[3] | W. Ma, D. Minda, A unified treatment of some special classes of univalent factors, In: Proceedings of the Conference on Complex Analysis, Tianjin, China, 19-23 June, 1992, Conference on Proceedings Lecture Notes for Analysis, Cambridge: International Press, 1994, 157-169. |
[4] | D. Coman, The radius of starlikeness for the error function, Stud. Univ. Babes-Bolyai. Math., 36 (1991), 13-16. |
[5] | S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Compt. Appl. Math., 105 (1999), 327-336. doi: 10.1016/S0377-0427(99)00018-7 |
[6] | S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pure Appl., 45 (2000), 647-657. |
[7] | S. N. Malik, Some topics in Geometric functions theory, Saarbrücken: LAP LAMBERT Academic Publishing, 2017. |
[8] | S. N. Malik, M. Raza, M. Arif, et al., Coeffifficient estiates of some subclasses of analytic functions related with conic domains, Anal. Univ. Ovidius Const. Ser. Mat., 21 (2013), 181-188. |
[9] | K. I. Noor, S. N. Malik, On Coefficient inequalities of functions associated with conic domains, Compt. Math. Appl., 62 (2011), 2209-2217. doi: 10.1016/j.camwa.2011.07.006 |
[10] | A. Ronning, Uniformly convex functions and corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196. doi: 10.1090/S0002-9939-1993-1128729-7 |
[11] | S. Kanas, An unified approach to Fekete-Szegö problem, Appl. Math. Compt., 218 (2012), 8453-8461. doi: 10.1016/j.amc.2012.01.070 |
[12] | B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl., 2014 (2014), 1-16. doi: 10.1186/1029-242X-2014-1 |
[13] | N. Magesh, V. K. Balaji, C. Abirami, Certain classes of Bi-univalent functions related to shell-like curves connected with Fibonancci numbers, arXiv: 1810: 06216v1 [math CV] 15 Oct, 2018. |
[14] | F. Yousef, R. A. Frasin, T. A. Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, arXiv: 1801.095331v2 [math CV] 22 Oct, 2018. |
[15] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, New York: Dover Publications Inc., 1965. |
[16] | H. Alzer, Error function inequalities, Adv. Comput. Math., 33 (2010), 349-379. doi: 10.1007/s10444-009-9139-2 |
[17] | A. Elbert, A. Laforgia, The zeros of the complimentary error function, Numer. Algorithms, 49 (2008), 153-157. doi: 10.1007/s11075-008-9186-7 |
[18] | S. Kanas, L. Vanitha, C. Ramanchandran, Certain results on q-starlike and q-convex error functions, Math. Slovaca., 68 (2018), 361-368. doi: 10.1515/ms-2017-0107 |
[19] | C. Ramanchandran, K. Dhanalakshmi, L. Vanitha, Hankel Determinant for a subclass of analytic functions associated nth error functions bounded by conical regions, Int. J. Math. Anal., 11 (2017), 571-581. doi: 10.12988/ijma.2017.7468 |
[20] | L. Wang, Y. Zhao, Unscented transformation with scaled symmetric sampling strategy for precision estimation of total least squares, Stud. Geophys. Geod., 61 (2017), 385-411. doi: 10.1007/s11200-016-1113-0 |
[21] | L. Wang, Y. Zhao, Scaled unscented transformation for nonlinear error propagation: Accuracy, sensitivity and applications, J. Surv. Eng., 144 (2018), 04017022. |
[22] | L. Wang, Y. Zhao, Second order approximating function method for precision estimation of total least squares, J. Surv. Eng., 145 (2019), 04018011. |
[23] | L. Wang, C. Zou, Accuracy analysis and applications of the Sterling interpolation method for nonlinear function error propagation, Measurement, 146 (2019), 55-64. doi: 10.1016/j.measurement.2019.06.017 |
[24] | K. O. Babalola, On λ-pseudo starlike function, J. Class. Anal., 3 (2013), 137-147. |
[25] | S. O. Olatunji, Sigmoid function in the space of univalent λ - pseudo starlike functions with Sakaguchi type functions, J. Progressive Res. Math., 7 (2016), 1164-1172. |
[26] | S. Altinkaya, Y. S. Özkan, On Salagean type pseudo-starlike functions, Acta Comment. Univ. Tartu. Math., 21 (2017), 275-285. |
[27] | G. Murugusundaramoorthy, T. Janani, Sigmoid function in the space of univalent λ-pseudo starlike functions, Int. J Pure Appl. Math., 101 (2015), 33-41. |
[28] | G. Murugusundaramoorthy, T. Janani, K. Vijaya, New subclass of pseudo-meromorphic bi-univalent functions of complex order, arXiv: 1709.00337v1 [math CV]31 Aug, 2017. |
[29] | S. N. Malik, S. Mahmood, M. Raza, et al., Coefficient inequalities of functions associated with petal type domain, Mathematics, 6 (2018), 1-11. |
[30] | S. Kanas, Coefficient estimates in subclasses of the Caratheodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005), 149-161. |