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1. Introduction

Let A denote the class of functions of the form

f (z) = z + a2z2 + a3z3 + a4z4 + · · · , (1.1)

which are analytic in the open unit disk D = (z :| z |< 1) and normalized by f (0) = 0 and f ′(0) = 1.
Recall that, S ⊂ A is the univalent function in D = (z :| z |< 1) and has the star-like and convex

functions as its sub-classes which their geometric condition satisfies Re
(
z f ′(z)
f (z)

)
> 0 and

Re
(
1 +

z f ′′(z)
f ′(z)

)
> 0. The two well-known sub-classes have been used to define different subclass of

analytical functions in different direction with different perspective and their results are too
voluminous in literature.
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Two functions f and g are said to be subordinate to each other, written as f ≺ g, if there exists a
Schwartz function w(z) such that

f (z) = g(w(z)), z ε D (1.2)

where w(0) and | w(z) |< 1 for z ε D. Let P denote the class of analytic functions such that p(0) = 1

and p(z) ≺
1 + z
1 − z

, z ε D. See [1] for details.

Goodman [2] proposed the concept of conic domain to generalize convex function which
generated the first parabolic region as an image domain of analytic function. The same author studied
and introduced the class of uniformly convex functions which satisfy

UCV = Re
{

1 + (z − ψ)
f ′′(z)
f ′(z)

}
> 0, (z, ψ ∈ A).

In recent time, Ma and Minda [3] studied the underneath characterization

UCV = Re
{

1 +
z f ′′(z)
f ′(z)

>

∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣} , z ε D. (1.3)

The characterization studied by [3] gave birth to first parabolic region of the form

Ω = {w; Re(w) >| w − 1 |} , (1.4)

which was later generalized by Kanas and Wisniowska ( [5, 6]) to

Ωk = {w; Re(w) > k | w − 1 |, k ≥ 0} . (1.5)

The Ωk represents the right half plane for k = 0, hyperbolic region for 0 < k < 1, parabolic region
for k = 1 and elliptic region for k > 1 [30].

The generalized conic region (1.5) has been studied by many researchers and their interesting results
litter everywhere. Just to mention but a few Malik [7] and Malik et al. [8].

More so, the conic domain Ω was generalized to domain Ω[A, B], −1 ≤ B < A ≤ 1 by Noor and
Malik [9] to

Ω[A, B] = {u + iv : [(B2 − 1)(U2 + V2) − 2(AB − 1)u + (A2 − 1)]2

> [−2(B + 1)(u2v2) + 2(A + B + C)u − 2(A + 1)]2 + 4(A − B)2v2}

and it is called petal type region.
A function p(z) is said to be in the class UP[A, B], if and only if

p(z) ≺
(A + 1)p̃(z) − (A − 1)
(B + 1)p̃(z) − (B − 1)

, (1.6)
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where p̃(z) = 1 +
2
π2

(
log

1 +
√

z
1 −
√

z

)2

.

Taking A = 1 and B = −1 in (1.8), the usual classes of functions studied by Goodman [1] and Kanas
( [5, 6]) will be obtained.

Furthermore, the classes UCV[A, B] and S T [A, B] are uniformly Janoski convex and Starlike
functions satisfies

Re


(B − 1)

(z f ′(z))′

f ′(z)
− (A − 1)

(B + 1)
(z f ′(z))′

f ′(z)
− (A + 1)

 >
∣∣∣∣∣∣∣∣∣∣∣
(B − 1)

(z f ′(z))′

f ′(z)
− (A − 1)

(B + 1)
(z f ′(z))′

f ′(z)
− (A + 1)

− 1

∣∣∣∣∣∣∣∣∣∣∣ (1.7)

and

Re


(B − 1)

z f ′(z)
f ′(z)

− (A − 1)

(B + 1)
z f ′(z)
f ′(z)

− (A + 1)

 >
∣∣∣∣∣∣∣∣∣∣∣
(B − 1)

z f ′(z)
f ′(z)

− (A − 1)

(B + 1)
z f ′(z)
f ′(z)

− (A + 1)
− 1

∣∣∣∣∣∣∣∣∣∣∣ , (1.8)

or equivalently

(z f ′(z))′

f ′(z)
∈ UP[A, B]

and

z f ′(z)
f ′(z)

∈ UP[A, B].

Setting A = 1 and B = −1 in (1.7) and (1.8), we obtained the classes of functions investigated by
Goodman [2] and Ronning [10].

The relevant connection to Fekete-Szegö problem is a way of maximizing the non-linear functional∣∣∣a3 − λa2
2

∣∣∣ for various subclasses of univalent function theory. To know much of history, we refer the
reader to [11–14] and so on.

The error function was defined because of the normal curve, and shows up anywhere the normal
curve appears. Error function occurs in diffusion which is a part of transport phenomena. It is also
useful in biology, mass flow, chemistry, physics and thermomechanics. According to the information
at hand, Abramowitz [15] expanded the error function into Maclaurin series of the form

Er f (z) =
2
√
π

∫ z

0
e−t2dt =

2
√
π

∞∑
n=0

(−1)nz2n+1

(2n + 1)n!
(1.9)

The properties and inequalities of error function were studied by [16] and [4] while the zeros of
complementary error function of the form

er f c(z) = 1 − er f (z) =
2
√
π

∫ ∞

z
e−t2dt, (1.10)
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was investigated by [17], see for more details in [18, 19] and so on. In recent time, [20–22] and [23]
applied error functions in numerical analysis and their results are flying in the air.

For f given by [15] and g with the form g(z) = z + b2z2 + b3z3 + · · · their Hadamard product
(convolution) by f ∗ g and at is defined as:

( f ∗ g)(z) = z +

∞∑
n=2

anbnzn (1.11)

Let Er f be a normalized analytical function which is obtained from (1.9) and given by

Er f =

√
πz
2

er f (z) = z +

∞∑
n=2

(−1)n−1zn

(2n − 1)(n − 1)!
(1.12)

Therefore, applying a notation (1.11) to (1.1) and (1.12) we obtain

ε = A ∗ Er f =

F : F (z) = ( f ∗ Er f )(z) = z +

∞∑
n=2

(−1)n−1anzn

(2n − 1)(n − 1)!
, f ∈ A

 , (1.13)

where Er f is the class that consists of a single function or Er f . See concept in Kanas et al. [18] and
Ramachandran et al. [19].

Babalola [24] introduced and studied the class of λ−pseudo starlike function of order β(0 ≤ β ≤ 1)
which satisfy the condition

Re
(
z( f ′(z))λ

f (z)

)
> β, (1.14)

where λ ≥ 1 ∈ <(z ∈ D) and denoted by ∠λ(β). We observed from (1.14) that putting λ = 2,
the geometric condition gives the product combination of bounded turning point and starlike function
which satisfy

Re f ′(z)
(
z( f ′(z))

f (z)

)
> β

Olatunji [25] extended the class ∠λ(β) to ∠βλ(s, t, Φ) which the geometric condition satisfy

Re
(
(s − t)z( f ′(z))λ

f (sz) − f (tz)

)
> β,

where s, t ∈ C, s , t, λ ≥ 1 ∈ <, 0 ≤ β < 1, z ∈ D and Φ(z) is the modified sigmoid function. The
initial coefficient bounds were obtained and the relevant connection to Fekete-Szegö inequalities were
generated. The contributions of authors like Altinkaya and Özkan [26] and Murugusundaramoorthy
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and Janani [27] and Murugusundaramoorthy et al. [28] can not be ignored when we are talking on
λ-pseudo starlike functions.

Inspired by earlier work by [18, 19, 29]. In this work, the authors employed the approach of [13] to
study the coefficient inequalities for pseudo certain subclasses of analytical functions related to petal
type region defined by error function. The first few coefficient bounds and the relevant connection
to Fekete-Szegö inequalities were obtained for the classes of functions defined. Also note that, the
results obtained here has not been in literature and varying of parameters involved will give birth to
corollaries.

For the purpose of the main results, the following lemmas and definitions are very necessary.

Lemma 1.1. If p(z) = 1 + p1z + p2z2 + · · · is a function with positive real part in D, then, for any
complex µ,

|p2 − µp2
1| ≤ 2 max {1, |2µ − 1|}

and the result is sharp for the functions

p0(z) =
1 + z
1 − z

or p(z) =
1 + z2

1 − z2 (z ∈ D).

Lemma 1.2. [29] Let p ∈ UP[A, B],−1 ≤ B < A ≤ 1 and of the form p(z) = 1 +

∞∑
n=1

pnzn. Then, for a

complex number µ, we have∣∣∣p2 − µp2
1

∣∣∣ ≤ 4
π2 (A − B) max

(
1,

∣∣∣∣∣ 4
π2 (B + 1) −

2
3

+ 4µ
(A − B
π2

)∣∣∣∣∣) . (1.15)

The result is sharp and the equality in (1.15) holds for the functions

p1(z) =

2(A + 1)
π2

(
log

1 +
√

z
1 −
√

z

)2

+ 2

2(B + 1)
π2

(
log

1 +
√

z
1 −
√

z

)2

+ 2

or

p2(z) =

2(A + 1)
π2

(
log

1 + z
1 − z

)2

+ 2

2(B + 1)
π2

(
log

1 + z
1 − z

)2

+ 2

.

Proof. For h ∈ P and of the form h(z) = 1 +

∞∑
n=1

cnzn, we consider

h(z) =
1 + w(z)
1 − w(z)
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where w(z) is such that w(0) = 0 and |w(z)| < 1. It follows easily that

w(z) =
h(z) − 1
h(z) + 1

=
1
2

z +

(
c2

2
−

c2
1

4

)
z2 +

(
c3

2
−

c2c1

2
+

c3
1

8

)
z3 + · · · (1.16)

Now, if p̃(z) = 1 + R1z + R2z2 + · · · , then from (1.16), one may have,

p̃(w(z)) = 1 + R1w(z) + R2(w(z))2 + R3(w(z))3 · · · (1.17)

where R1 = 8
π2 , R2 = 16

3π2 , and R3 = 184
45π2 , see [30]. Substitute R1,R2 and R3 into (1.17) to obtain

p̃(w(z)) = 1 +
4c1

π2 z +
4
π2 (c2 −

c2
1

6
)z2 +

4
π2 (c3 −

c1c2

3
+

2c3
1

45
)z3 + · · · (1.18)

Since p ∈ UP[A, B], so from relations (1.16), (1.17) and (1.18), one may have,

p(z) =
(A + 1)p̃(w(z)) − (A − 1)
(B + 1)p̃(w(z)) − (B − 1)

=
2 + (A + 1) 4

π2 c1z + (A + 1) 4
π2 (c2 −

c2
1

6 )z2 + · · ·

2 + (B + 1) 4
π2 c1z + (B + 1) 4

π2 (c2 −
c2

1
6 )z2 + · · ·

This implies that,

p(z) =1 +
2(A − B)c1

π2 z +
2(A − B)

π2

(
c2 −

c2
1

6
−

2(B − 1)c2
1

π2

)
z2

+
8(A − B)

π2

[(
(B + 1)2

π4 +
B + 1
6π2

1
90

)
c2

1 −

(
B + 1
π2 +

1
12

)
c1c2 +

c3

4

]
z3 + · · · (1.19)

If p(z) = 1 +
∑∞

n=1 pnzn, then equating coefficients of z and z2, one may have,

p1 =
2
π2 (A − B)c1

and

p2 =
2
π2 (A − B)

(
c2 −

c2
1

6
−

2(B − 1)c2
1

π2

)
.

Now for a complex number µ, consider

p2 − µp2
1 =

2(A − B)
π2

[
c2 − c2

1

(
1
6

+
2(B + 1)

π2 +
2µ(A − B)

π2

)]
This implies that

∣∣∣p2 − µp2
1

∣∣∣ =
2(A − B)

π2

∣∣∣∣∣∣c2 − c2
1

(
1
6

+
2(B + 1)

π2 +
2µ(A − B)

π2

)∣∣∣∣∣∣ .
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Using Lemma 1.1, one may have

∣∣∣p2 − µp2
1

∣∣∣ =
4(A − B)

π2 max {1, |2v − 1|} ,

where v = 1
6 +

2(B+1)
π2 +

2µ(A−B)
π2 , which completes the proof of the Lemma. �

Definition 1.3. A function F εA is said to be in the class UCV[λ, A, B], −1 ≤ B < A ≤ 1, if and only
if,

Re

 (B − 1) (z(F ′(z)λ))′

F ′(z) − (A − 1)

(B + 1) (z(F ′(z)λ))′
F ′(z) − (A + 1)

 >
∣∣∣∣∣∣∣∣
(B − 1) (z(F ′(z)λ))′

F ′(z) − (A − 1)

(B + 1) (z(F ′(z)λ))′
F ′(z) − (A + 1)

− 1

∣∣∣∣∣∣∣∣ , (1.20)

where λ ≥ 1εR or equivalently (z(F ′(z)λ))′

F ′(z) εUP[A, B].

Definition 1.4. A function F εA is said to be in the class US [λ, A, B], −1 ≤ B < A ≤ 1, if and only if,

Re

 (B − 1) z(F ′(z)λ)
F (z) − (A − 1)

(B + 1) z(F ′(z)λ)
F (z) − (A + 1)

 >
∣∣∣∣∣∣∣∣
(B − 1) z(F ′(z)λ)

F (z) − (A − 1)

(B + 1) z(F ′(z)λ)
F (z) − (A + 1)

− 1

∣∣∣∣∣∣∣∣ , (1.21)

where λ ≥ 1εR or equivalently z(F ′(z)λ)
F (z) εUP[A, B].

Definition 1.5. A function F εA is said to be in the class UMα[λ, A, B], −1 ≤ B < A ≤ 1, if and only
if,

Re

 (B − 1)
[
(1 − α) z(F ′(z)λ)

F (z) + α (z(F ′(z)λ))′

F ′(z)

]
− (A − 1)

(B + 1)
[
(1 − α) z(F ′(z)λ)

F (z) + α (z(F ′(z)λ))′
F ′(z)

]
− (A + 1)


>

∣∣∣∣∣∣∣∣
(B − 1)

[
(1 − α) z(F ′(z)λ)

F (z) + α (z(F ′(z)λ))′

F ′(z)

]
− (A − 1)

(B + 1)
[
(1 − α) z(F ′(z)λ)

F (z) + α (z(F ′(z)λ))′
F ′(z)

]
− (A + 1)

− 1

∣∣∣∣∣∣∣∣ ,
where α ≥ 0 and λ ≥ 1εR or equivalently (1 − α) z(F ′(z)λ)

f (z) + α (z( f ′(z)λ))′

f ′(z) ∈ UP[A, B].

2. Main results

In this section, we shall state and prove the main results, and several corollaries can easily be
deduced under various conditions.

Theorem 2.1. Let F ∈ US [λ, A, B], −1 ≤ B < A ≤ 1, and of the form (1.13). Then, for a real number
µ, we have

|a3 − µa2
2| ≤

40(A − B)
|1 − 3λ|π2 max

{
1,

∣∣∣∣∣∣4(B + 1)
π2 −

1
3
−

2(A − B)
(1 − 2λ)2π2

(
2(2λ2 − 4λ + 1) −

9µ(1 − 3λ)
5

)∣∣∣∣∣∣
}
.
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Proof. If F ∈ US [λ, A, B], −1 ≤ B < A ≤ 1, the it follows from relations (1.18),(1.19), and (1.20),

z(F ′(z)λ)
F (z)

=
(A + 1) p̃(w(z)) − (A − 1)
(B + 1) p̃(w(z)) − (B − 1)

,

where w(z) is such that w(0) = 0 and | w(z) |< 1. The right hand side of the above expression get its
series form from (1.13) and reduces to

z(F ′(z)λ)
F (z)

= 1 +
2(A − B)c1

π2 z +
2(A − B)

π2

(
c2 −

c2
1

6
−

2(B − 1)c2
1

π2

)
z2

+
8(A − B)

π2

[(
(B + 1)2

π4 +
B + 1
6π2

1
90

)
c2

1 −

(
B + 1
π2 +

1
12

)
c1c2 +

c3

4

]
z3 + · · · . (2.1)

If F (z) = z +
∑∞

n=2
(−1)n−1anzn

(2n−1)(n−1)! , then one may have

z(F ′(z)λ)
F (z)

= 1 +
1 − 2λ

3
a2z +

(
2λ2 − 4λ + 1

9
a2

2 −
1 − 3λ

10
a3

)
z2 + · · · (2.2)

From (2.1) and (2.2), comparison of coefficient of z and z2 gives,

a2 =
6(A − B)

(1 − 2λ)π2 c1 (2.3)

and

2λ2 − 4λ + 1
9

a2
2 −

1 − 3λ
10

a3 =
2(A − B)

π2

(
c2 −

1
6

c2
1 −

2(B + 1)
π2 c2

1

)
.

This implies, by using (2.3), that

a3 =
−20(A − B)
(1 − 3λ)π2

[
c2 −

1
6

c2
1 −

2(B + 1)
π2 c2

1 −
2(2λ2 − 4λ + 1)(A − B)

(1 − 2λ)2π2 c2
1

]
.

Now, for a real number µ consider ∣∣∣a3 − µa2
2

∣∣∣ =∣∣∣∣∣∣− 20(A − B)
(1 − 3λ)π2

(
c2 −

1
6

c2
1 −

2(B + 1)
π2 c2

1

)
+

40(A − B)2(2λ2 − 4λ + 1)
(1 − 2λ)2(1 − 3λ)π4 −

36µ(A − B)2c2
1

(1 − 2λ)2π4

∣∣∣∣∣∣
=

20(A − B)
(1 − 3λ)π2

∣∣∣∣∣∣c2 − c2
1

(
1
6

+
2(B + 1)

π2 −
2(A − B)(2λ2−4λ+1)

(1 − 2λ)2π2 +
9µ(A − B)(1 − 3λ)

5(1 − 2λ)2π2

)∣∣∣∣∣∣
=

20(A − B)
(1 − 3λ)π2

∣∣∣c2 − vc2
1

∣∣∣
where v = 1

6 +
2(B+1)
π2 −

(A−B)
(1−2λ)2π2

(
2(2λ2 − 4λ + 1) − 9µ(1−3λ)

5

)
. �
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Theorem 2.2. Let F ∈ UCV[λ, A, B], −1 ≤ B < A ≤ 1, and of the form (1.13). Then, for a real
number µ, we have

|a3 − µa2
2| ≤

40(A − B)
3|1 + 3λ|π2 max

{
1,

∣∣∣∣∣4(B + 1)
π2 −

1
3
−

2(1 + 3λ)(A − B)
(1 + 2λ)2π2 (λ −

27µ
20

)
∣∣∣∣∣}

Proof. If F ∈ UCV[λ, A, B], −1 ≤ B < A ≤ 1, then it follows from relations (1.18), (1.19), and (1.21),

(zF ′(z)λ)
′

F ′(z)
=

(A + 1)p̃(w(z)) − (A − 1)
(B + 1)p̃(w(z)) − (B + 1)

,

where w(z) is such that w(0) = 0 and | w(z) |< 1. The right hand side of the above expression get its
series form from (1.13) and reduces to,

(zF ′(z)λ)
′

F ′(z)
= 1 +

2(A − B)c1

π2 z +
2(A − B)

π2

(
c2 −

c2
1

6
−

2(B + 1)
π2 c2

1

)
z2

+
8(A − B)

π2

[(
B + 1
π4 +

B + 1
6π2 +

1
90

)
c3

1 −

(
B + 1
π2 +

1
12

)
c1c2 +

c3

4

]
z3 + · · · (2.4)

If F (z) = z +
∑ (−1)n−1anzn

(2n − 1)(n − 1)!
, then we have,

(zF ′(z)λ)
′

F ′(z)
= 1 −

2(1 + 2λ)
3

a2z + (1 + 3λ)
(
3a3

10
+

2λ
9

a2
2

)
z2 + · · · (2.5)

From (2.4) and (2.5), comparison of coefficients of z and z2 gives,

a2 = −
3(A − B)c1

(1 + 2λ)π2 (2.6)

and

(1 + 3λ)
(
3a3

10
+

2λ
9

a2
2

)
=

2(A − B)
π2

(
c2 −

c2
1

6
−

2(B + 1)c2
1

π2

)
This implies, by using (2.6), that

a3 =
10
3

[
2(A − B)

(1 + 3λ)π2

(
c2 −

c2
1

6
−

2(B + 1)c2
1

π2

)
+

2λ(A − B)2c2
1

(1 + 2λ)2π4

]
.

Now, for a real number µ, consider

∣∣∣a3 − µa2
2

∣∣∣ =

∣∣∣∣∣∣− 20(A − B)
3(1 + 3λ)π2

(
c2 −

1
6

c1 −
2(B + 1)

π2 c2
1

)
+

20(A − B)2c2
1

3(1 + 2λ)π4 −
9µ(A − B)2c2

1

(1 + 2λ)2π4

∣∣∣∣∣∣
=

20(A − B)
3(1 + 3λ)π2

∣∣∣∣∣∣c2 − c2
1

(
1
6

+
2(B + 1)

π2 −
λ(1 + 3λ)(A − B)

(1 + 2λ)2π2 +
27µ(A − B)(1 + 3λ)

20(1 + 2λ)2π2

)∣∣∣∣∣∣
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=
20(A − B)

3(1 + 3λ)π2

∣∣∣c2 − vc2
1

∣∣∣ ,
where

v =
1
6

+
2(B + 1)

π2 −
(1 + 3λ)(A − B)

(1 + 2λ)2π2

(
λ −

27µ
20

)
.

�

Theorem 2.3. F ∈ Mα[λ, A, B], −1 ≤ B < A ≤ 1, α ≥ 0 and of the form (1.13). Then, for a real
number µ, we have

|a3 − µa2
2| ≤

40(A − B)
π2|3(λ + α + 2αλ) + α − 1|

max
{

1,

∣∣∣∣∣∣4(B + 1)
π2 −

1
3

−
4(A − B)

[1 − 2λ − α(3 + 2λ)]2π2

(
2λ2(1 + 2α) + 2λ(3α − 2) + 1 − α −

9µ(3(λ + α + 2αλ) + α − 1)
10

) ∣∣∣∣∣∣
}
.

Proof. Let F ∈ Mα[λ, A, B], −1 ≤ B < A ≤ 1, α ≥ 0 and of the form (1.13). Then, for a real number
µ, we have

(1 − α)
z(F ′(z))λ

F (z)
+ α

(z(F ′(z))λ)′

F ′(z)
=

(A + 1)p̃(w(z)) − (A − 1)
(B + 1)p̃(w(z)) − (B − 1)

, (2.7)

where w(z) is such that w(z0) = 0 and |w(z)| < 1. The right hand side of the above expression get its
series form from (2.7) and reduces to

(1 − α)
z(F ′(z))λ

F (z)
+ α

(z(F ′(z))λ)′

F ′(z)
= 1 +

2(A − B)G
π2 z +

2(A − B)
π2 (c2 −

c2
1

6
−

2(B + 1)
π2 c2

1)z2 + ... (2.8)

If F (z) = z +
∑∞

n=2
(−1)n−1anzn

(2n − 1)(n − 1)!
, then one may have

(1 − α)
z(F ′(z))λ

F (z)
+ α

(z(F ′(z))λ)′

F ′(z)
= (1 − α)

[
1 +

1 − 2λ
3

a2z + (
2λ2 − 4λ + 1

9
a2

2 −
1 − 3λ

10
a3)z2 + ...

]
+ α

[
1 −

2(1 + 2λ)
3

a2z + (1 + 3λ)(
3a3

10
+

2λ
9

a22)z2 + ...
]

(2.9)

from (2.8) and (2.9), comparison of coefficients of z and z2 gives

a2 =
6(A − B)c1

[1 − 2λ − α(3 + 2λ)]π2 (2.10)

and

3(λ + α + 2αλ) + α − 1
10

a3 −
2λ2(1 + 2λ) + α − 1

9
a2

2 =
2(A − B)

π2

(
c2 −

c2
1

6
−

2(B + 1)
π2 c2

1

)
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This implies, by using (2.10), that

a3 =
10

3(λ + α + 2αλ) + α − 1

[2(A − B)
π2

(
c2 −

c2
1

6
−

2(B + 1)
π2 c2

1

)
+

4(A − B)2[2λ2(1 + 2λ) + 2λ(3α − 2) + 1 − α]
[1 − 2λ − α(3 + 2λ)]2π4 c2

1

]
Now, for a real number µ, consider

∣∣∣∣∣a3 − µa2
2

∣∣∣∣∣ =

∣∣∣∣∣∣ 10
3(λ + α + 2αλ) + α − 1

[2(A − B)
π2

(
c2 −

c2
1

6
−

2(B + 1)
π2 c2

1

)
+

4(A − B)2[2λ2(1 + 2λ) + 2λ(3α − 2) + 1 − α]
[1 − 2λ − α(3 + 2λ)]2π4 c2

1

]
−

36(A − B)2µG2

[1 − 2λ − α(3 + 2λ)]2π4

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 20(A − B)
π(3(λ + α + 2αλ) + α − 1)

∣∣∣∣∣∣c2 − c2
1

[1
6

+
2(B + 1)

π2 −
2(A − B)[2λ2(1 + 2α) + 2λ(3α − 2) + 1 − α]

(1 − 2λ − α(3 + 2λ))2π2

+
18µ(A − B)[3(λ + α + 2αλ) + α − 1]

10[1 − 2λ − α(3 + 2λ)]2π2

=
20(A − B)

π(3(λ + α + 2αλ) + α − 1)

∣∣∣∣∣∣c2 − vc2
1

∣∣∣∣∣∣,
where

v =
1
6

+
2(B + 1)

π2 −
2(A − B)[2λ2(1 + 2α) + 2λ(3α − 2) + 1 − α]

(1 − 2λ − α(3 + 2λ))2π2 +
18µ(A − B)[3(λ + α + 2αλ) + α − 1]

10[1 − 2λ − α(3 + 2λ)]2π2 .

�

3. Conclusions

The force applied on certain subclasses of analytical functions associated with petal type domain
defined by error function has played a vital role in this work. The results obtained are new and varying
the parameters involved in the classes of function defined, these will bring new more results that has
not been in existence.
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