Citation: İmdat İşcan. A new improvement of Hölder inequality via isotonic linear functionals[J]. AIMS Mathematics, 2020, 5(3): 1720-1728. doi: 10.3934/math.2020116
[1] | S. Abramovich, J. E. Pečarić, S. Varošanec, Sharpening Hölder's and Popoviciu's inequalities via functionals, The Rocky Mountain Journal of Mathematics, 34 (2004), 793-810. doi: 10.1216/rmjm/1181069827 |
[2] | L. Ciurdariu, Some refinements of Hölder's inequalities via isotonic linear functionals, Journal of Science and Arts, 14 (2014), 221-228. |
[3] | L. Ciurdariu, Several Applications of Young-Type and Holder's Inequalities, Applied Mathematical Sciences, 10 (2016), 1763-1774. doi: 10.12988/ams.2016.6275 |
[4] | S. S. Dragomir, A Grüss type inequality for isotonic linear functionals and applications, Demonstratio Mathematica, 36 (2003), 551-562. |
[5] | S. S. Dragomir, Some results for isotonic functionals via an inequality due to Kittaneh and Manasrah, Fasciculi Mathematici, 59 (2017), 29-42. doi: 10.1515/fascmath-2017-0015 |
[6] | S. S. Dragomir, M. A. Khan, A. Abathun, Refinement of the Jensen integral inequality, Open Mathematics, 14 (2016), 221-228. |
[7] | A. Guessab, O. Nouisser, J. Pečarić, A multivariate extension of an inequality of BrennerAlzer, Archiv der Mathematik, 98 (2012), 277-287. doi: 10.1007/s00013-012-0361-7 |
[8] | A. Guessab, G. Schmeisser, Sharp Integral Inequalities of the HermiteHadamard Type, J. Approx. Theory, 115 (2002), 260-288. doi: 10.1006/jath.2001.3658 |
[9] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comput. Mathematics of computation, 73 (2004), 1365-1384. |
[10] | İ. İşcan, New Refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4 |
[11] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink. Classical and new inequalities in analysis, KluwerAkademic Publishers, Dordrecht, Boston, London, 1993. |
[12] | J. E. Pečarić, Generalization of the power means and their inequalities, Journal of Mathematical Analysis and Applications, 161 (1991), 395-404. doi: 10.1016/0022-247X(91)90339-2 |
[13] | J. E. Pečarić, F. Proschan Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, New York, 1992. |
[14] | M. Z. Sarıkaya, E. Set, M. E. Özdemir, New Some Hadamard's Type Inequalities for Co-ordinated Convex Functions, Tamsui Oxford Journal of Information and Mathematical Sciences, 28 (2012), 137-152. |