Citation: Yang Liu, Enyu Fan, Baoli Yin, Hong Li. Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative[J]. AIMS Mathematics, 2020, 5(3): 1729-1744. doi: 10.3934/math.2020117
[1] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys. J. R. Astr. Soc., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[2] | J. Li, Y. Huang, Y. Lin, Developing finite element methods for Maxwell's equations in a cole-cole dispersive medium, SIAM J. Sci. Comput., 33 (2011), 3153-3174. doi: 10.1137/110827624 |
[3] | D. Shi, H. Yang, A new approach of superconvergence analysis for two-dimensional time fractional diffusion equation, Comput. Math. Appl., 75 (2018), 3012-3023. doi: 10.1016/j.camwa.2018.01.029 |
[4] | M. Zheng, F. Liu, Q. Liu, et al., Numerical solution of the time fractional reaction-diffusion equation with a moving boundary, J. Comput. Phys., 338 (2017), 493-510. doi: 10.1016/j.jcp.2017.03.006 |
[5] | Y. Liu, M. Zhang, H. Li, et al., High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298-1314. doi: 10.1016/j.camwa.2016.08.015 |
[6] | Y. Liu, Y. Du, H. Li, et al., A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70 (2015), 2474-2492. doi: 10.1016/j.camwa.2015.09.012 |
[7] | A. Khan, J. F. Gómez-Aguilar, T. S. Khan, et al., Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119-128. doi: 10.1016/j.chaos.2019.03.022 |
[8] | L. Liu, L. Zheng, Y. Chen, et al., Fractional boundary layer flow and heat transfer over a stretching sheet with variable thickness, J. Heat Transfer, 140 (2018), 091701-1-9. doi: 10.1115/1.4039765 |
[9] | Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552. doi: 10.1016/j.jcp.2007.02.001 |
[10] | Z. Z. Sun, X. N. Wu, A fully discrete scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193-209. doi: 10.1016/j.apnum.2005.03.003 |
[11] | Z. J. Zhou, W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl., 71 (2016), 301-318. doi: 10.1016/j.camwa.2015.11.014 |
[12] | B. Jin, R. Lazarov, Y. K. Liu, et al., The Galerkin finite element method for a multi-term timefractional diffusion equation, J. Comput. Phys., 281 (2015), 825-843. doi: 10.1016/j.jcp.2014.10.051 |
[13] | Y. J. Jiang, J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285-3290. doi: 10.1016/j.cam.2011.01.011 |
[14] | S. Jiang, J. Zhang, Q. Zhang, et al., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650-678. doi: 10.4208/cicp.OA-2016-0136 |
[15] | Y. Zhao, W. Bu, J. Huang, et al., Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 257 (2015), 553-565. |
[16] | N. Liu, Y. Liu, H. Li, et al., Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term, Comput. Math. Appl., 75 (2018), 3521-3536. doi: 10.1016/j.camwa.2018.02.014 |
[17] | M. Abbaszadeh, M. Dehghan, A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method, Comput. Math. Appl., 70 (2015), 2493-2512. doi: 10.1016/j.camwa.2015.09.011 |
[18] | C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855-875. doi: 10.1016/j.camwa.2011.02.045 |
[19] | B. L. Yin, Y. Liu, H. Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Appl. Math. Comput., 368 (2020), 124799. |
[20] | H. Z. Chen, H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation, J. Comput. Appl. Math., 296 (2016), 480-498. doi: 10.1016/j.cam.2015.09.022 |
[21] | C. Li, W. H. Deng, A new family of difference schemes for space fractional advection diffusion equation, Adv. Appl. Math. Mech., 9 (2017), 282-306. doi: 10.4208/aamm.2015.m1069 |
[22] | L. Feng, F. Liu, I. Turner, et al, Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains, Appl. Math. Model., 59 (2018), 441-463. doi: 10.1016/j.apm.2018.01.044 |
[23] | F. Zeng, F. Liu, C. Li, et al., A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599-2622. doi: 10.1137/130934192 |
[24] | B. Yin, Y. Liu, H. Li, et al., Fast algorithm based on TT-M FE system for space fractional AllenCahn equations with smooth and non-smooth solutions, J. Comput. Phys., 379 (2019), 351-372. doi: 10.1016/j.jcp.2018.12.004 |
[25] | G. Zhang, C. Huang, M. Li, A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations, Eur. Phys. J. Plus, 133 (2018), 155. |
[26] | H. L. Liao, P. Lyu, S. W. Vong, Second-order BDF time approximation for Riesz space-fractional diffusion equations, Int. J. Comput. Math., 95 (2018), 144-158. doi: 10.1080/00207160.2017.1366461 |
[27] | A. Atangana, B. S. T. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 871-877. |
[28] | A. Atangana, J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1-7. |
[29] | D. Baleanu, A. Mousalou, S. Rezapour, A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative, Adv. Differ. Equ., 2017 (2017), 51. |
[30] | V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. Saad, et al., Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect, Math. Meth. Appl. Sci., 42 (2019), 1167-1193. doi: 10.1002/mma.5421 |
[31] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. |
[32] | E. F. D. Goufo, An application of the Caputo-Fabrizio operator to replicator-mutator dynamics: Bifurcation, chaotic limit cycles and control, Eur. Phys. J. Plus, 80 (2018), 133. |
[33] | E. Fan, Y. Liu, Y. Hou, et al., Finite element method with time second-order approximation scheme for a nonlinear time Caputo-Fabrizio fractional reaction-diffusion model, submitted, 2019. |
[34] | T. Akman, B. Yildiz, D. Baleanu, New discretization of Caputo-Fabrizio derivative, Comput. Appl. Math., 37 (2018), 3307-3333. doi: 10.1007/s40314-017-0514-1 |
[35] | Z. Liu, A. Cheng, X. Li, A second order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative, Int. J. Comput. Math., 95 (2018), 396-411. doi: 10.1080/00207160.2017.1290434 |
[36] | M. Zhang, Y. Liu, H. Li, High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative, Numer Methods Partial Differential Eq., 35 (2019), 1588-1612. doi: 10.1002/num.22366 |
[37] | F. Yu, M. Chen, Finite difference/spectral approximations for the two-dimensional time CaputoFabrizio fractional diffusion equation, arXiv:1906.00328v1 [math.NA], 2019. |
[38] | J. Y. Cao, Z. Q. Wang, C. J. Xu, A high-order scheme for fractional ordinary differential equations with the Caputo-Fabrizio derivative, Commun. Appl. Math. Comput., Available from: https://doi.org/10.1007/s42967-019-00043-8. |
[39] | H. Liu, A. Cheng, H. Yan, et al., A fast compact finite difference method for quasilinear time fractional parabolic equation without singular kernel, Int. J. Comput. Math., 96 (2019), 1444-1460. doi: 10.1080/00207160.2018.1501479 |
[40] | S. S. Roshan, H. Jafari, D. Baleanu, Solving FDEs with Caputo-Fabrizio derivative by operational matrix based on Genocchi polynomials, Math. Method Appl. Sci., 41 (2018), 9134-9141. doi: 10.1002/mma.5098 |
[41] | T. Kaczorek, Minimum energy control of fractional positive continuous-time linear systems using Caputo-Fabrizio definition, Bulletin Polish Academy Sci. Tech. Sci., 65 (2017), 45-51. |
[42] | S. Ullah, M. A. Khan, M. Farooq, A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 237. |
[43] | V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., 62 (2018), 157-163. doi: 10.1016/j.cnsns.2018.02.019 |
[44] | V. E. Tarasov, Caputo-Fabrizio operator in terms of integer derivatives: Memory or distributed lag?, Comput. Appl. Math., 38 (2019), 113. |
[45] | M. Stynes, Fractional-order derivatives defined by continuous kernels are too restrictive, Appl. Math. Lett. 85 (2018), 22-26. doi: 10.1016/j.aml.2018.05.013 |
[46] | X. J. Yang, H. M. Srivastava, J. T. Machado, A new fractional derivative without singular kernel, Therm. Sci., 20 (2016), 753-756. doi: 10.2298/TSCI151224222Y |
[47] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. |
[48] | C. P. Li, M. Cai, Theory and numerical approximation of fractional integrals and derivatives, 2019. |
[49] | C. Li, R. Wu, H. Ding, High-order approximation to Caputo derivatives and Caputotype advection-diffusion equations, Commun. Appl. Indust. Math., 536 (2015), DOI:10.1685/journal.caim. |
[50] | Y. Liu, Y. Du, H. Li, et al., Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation, Numer. Algor., 80 (2019), 533-555. doi: 10.1007/s11075-018-0496-0 |
[51] | B. Yin, Y. Liu, H. Li, et al., Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations, arXiv preprint arXiv:1906.01242, (2019). |
[52] | F. Zeng, I. Turner, K. Burrage, A stable fast time-stepping method for fractional integral and derivative operators, J. Sci. Comput., 77 (2018), 283-307. doi: 10.1007/s10915-018-0707-9 |
[53] | A. Schädle, M. López-Fernández, C. Lubich, Fast and oblivious convolution quadrature, SIAM J. Sci. Comput., 28 (2006), 421-438. doi: 10.1137/050623139 |
[54] | M. Li, X. M. Gu, C. M. Huang, et al., A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358 (2018), 256-282. doi: 10.1016/j.jcp.2017.12.044 |
[55] | S. Chen, F. Liu, X. Jiang, et al., A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients, Appl. Math. Comput., 257 (2015), 591-601. |